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We present a novel unified framework for both static and space-time saliency detection. Our method is a bottom-up
approach and computes so-called local regression kernels (i.e., local descriptors) from the given image (or a video), which
measure the likeness of a pixel (or voxel) to its surroundings. Visual saliency is then computed using the said “self-
resemblance” measure. The framework results in a saliency map where each pixel (or voxel) indicates the statistical
likelihood of saliency of a feature matrix given its surrounding feature matrices. As a similarity measure, matrix cosine
similarity (a generalization of cosine similarity) is employed. State of the art performance is demonstrated on commonly
used human eye fixation data (static scenes (N. Bruce & J. Tsotsos, 2006) and dynamic scenes (L. Itti & P. Baldi, 2006)) and
some psychological patterns.
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Introduction

The human visual system has a remarkable ability to
automatically attend to only salient locations in static and
dynamic scenes (Chun & Wolfe, 2001; Itti & Koch, 2001;
Yarbus, 1967). This ability enables us to allocate limited
perceptual and cognitive resources on task-relevant visual
input. In machine vision system, a flood of visual information
fed into the system needs to be efficiently scanned in advance
for relevance. In this paper, we propose a computational
model for selective visual attention, otherwise known as
visual saliency. In recent years, visual saliency detection has
been of great research interest (Bruce & Tsotsos, 2006; Gao,
Mahadevan, &Vasconcelos, 2008; Gao & Vasconcelos, 2005;
Hou & Zhang, 2008a; Hou & Zhang, 2008b; Itti, Koch, &
Niebur, 1998; Kanan, Tong, Zhang, & Cottrell, 2009; Marat
et al., 2009; Torralba, Fergus, & Freeman, 2008; Zhang,
Tong, & Cottrell, 2009; Zhang, Tong, Marks, Shan, &
Cottrell, 2008). Analysis of visual attention has benefited a
wide range of applications such as object detection, action
detection, video summarization (Marat, Guironnet, &
Pellerin, 2007), image quality assessment (Ma & Zhang,
2008; Niassi, LeMeur, Lecallet, & Barba, 2007) and more.
There are two types of computational models for saliency
according to what the model is driven by: a bottom-up
saliency (Bruce & Tsotsos, 2006; Gao et al., 2008; Hou &
Zhang, 2008a; Hou & Zhang, 2008b; Itti et al., 1998; Marat
et al., 2009; Zhang et al., 2009; Zhang et al., 2008) and a top-
down saliency (Gao & Vasconcelos, 2005; Kanan et al.,
2009; Torralba et al., 2008). As opposed to bottom-up

saliency algorithms that are fast and driven by low-level
features, top-down saliency algorithms are slower and task-
driven. In general, the plausibility of bottom-up saliency
models is examined in terms of predicting eye movement
data made by human observers in a task designed to
minimize the role of top-down factors. Although some
progress has been made by parametric saliency models
(Gao et al., 2008; Itti et al., 1998; Torralba et al., 2008;
Zhang et al., 2008) in predicting fixation patterns and visual
search, there is significant room to further improve the
accuracy. In this paper, we develop a nonparametric bottom-
up visual saliency method which exhibits the state-of-the art
performance. The problem of interest addressed is bottom-up
saliency which can be described as follow: Given an image
or a video, we are interested in accurately detecting salient
objects or actions from the data without any background
knowledge. To accomplish this task, we propose to use, as
features, so-called local steering kernels and space-time local
steeringkernelswhich capture local data structure exceedingly
well. Our approach is motivated by a probabilistic frame-
work, which is based on a nonparametric estimate of the
likelihood of saliency. As we describe below, this boils
down to the local calculation of a “self-resemblance” map,
which measures the similarity of a feature matrix at a pixel
of interest to its neighboring feature matrices.

Previous work

Itti et al. (1998) introduced a saliency model which was
biologically inspired. Specifically, they proposed to use a
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set of feature maps from three complementary channels as
intensity, color, and orientation. The normalized feature
maps from each channel were then linearly combined to
generate the overall saliency map. Even though this model
has been shown to be successful in predicting human
fixations, it is somewhat ad-hoc in that there is no objective
function to be optimized and many parameters must be
tuned by hand. With the proliferation of eye-tracking data,
a number of researchers have recently attempted to address
the question of what attracts human visual attention by
being more mathematically and statistically precise (Bruce
& Tsotsos, 2006; Gao et al., 2008; Gao & Vasconcelos,
2004; Gao & Vasconcelos, 2005; Hou & Zhang, 2008a; Itti
& Baldi, 2006; Zhang et al., 2008).
Bruce and Tsotsos (2006) modeled bottom-up saliency

as the maximum information sampled from an image.
More specifically, saliency is computed as Shannon’s self-
information jlog p(f), where f is a local visual feature
vector (i.e., derived from independent component analysis
(ICA) performed on a large sample of small RGB patches
in the image.) The probability density function is
estimated based on a Gaussian kernel density estimate in
a neural circuit.
Gao et al. (2008), Gao and Vasconcelos (2004), and

Gao and Vasconcelos (2005) proposed a unified frame-
work for top-down and bottom-up saliency as a classi-
fication problem with the objective being the
minimization of classification error. They first applied
this framework to object detection (Gao & Vasconcelos,
2005) in which a set of features are selected such that a
class of interest is best discriminated from all other
classes, and saliency is defined as the weighted sum of
features that are salient for that class. In Gao et al. (2008),
they defined bottom-up saliency using the idea that pixel
locations are salient if they are distinguished from their
surroundings. They used difference of Gaussians (DoG)
filters and Gabor filters, measuring the saliency of a point
as the Kullback–Leibler (KL) divergence between the
histogram of filter responses at the point and the histogram
of filter responses in the surrounding region. Mahadevan
and Vasconcelos (2008) applied this bottom-up saliency to
background subtraction in highly dynamic scenes.
Oliva, Torralba, Castelhano, and Henderson (2003) and

Torralba et al. (2008) proposed a Bayesian framework for
the task of visual search (i.e., whether a target is present
or not.) They modeled bottom-up saliency as 1

pðf kfGÞ where
fG represents a global feature that summarizes the appearance
of the scene, and approximated this conditional probability
density function by fitting to a multivariate exponential
distribution. Zhang et al. (2008) also proposed saliency
detection using natural statistics (SUN) based on a similar
Bayesian framework to estimate the probability of a target at
every location. They also claimed that their saliency measure
emerges from the use of Shannon’s self-information under
certain assumptions. They used ICA features as similarly
done in Bruce and Tsotsos (2006), but their method differs
from Bruce and Tsotsos (2006) in that natural image

statistics were applied to determine the density function of
ICA features. Itti and Baldi (2006) proposed so-called
“Bayesian Surprise” and extended it to the video case (Itti
& Baldi, 2005). They measured KL-divergence between a
prior distribution and posterior distribution as a measure of
saliency.
For saliency detection in video, Marat et al. (2009)

proposed a space-time saliency detection algorithm
inspired by the human visual system. They fused a static
saliency map and a dynamic saliency map to generate the
space-time saliency map. Gao et al. (2008) adopted a
dynamic texture model using a Kalman filter in order to
capture the motion patterns even in the case that the scene
is itself dynamic. Zhang et al. (2009) extended their SUN
framework to a dynamic scene by introducing temporal
filter (Difference of Exponential:DoE) and fitting a
generalized Gaussian distribution to the estimated distri-
bution for each filter response.
Most of the methods (Gao et al., 2008; Itti et al., 1998;

Oliva et al., 2003; Zhang et al., 2009) based on Gabor or
DoG filter responses require many design parameters such as
the number of filters, type of filters, choice of the non-
linearities, and a proper normalization scheme. These
methods tend to emphasize textured areas as being salient
regardless of their context. In order to deal with these
problems, Bruce and Tsotsos (2006) and Zhang et al. (2008)
adopted non-linear features that model complex cells or
neurons in higher levels of the visual system. Kienzle,
Wichmann, Scholkopf, and Franz (2007) further proposed
to learn a visual saliency model directly from human
eyetracking data using a support vector machine (SVM).
Different from traditional image statistical models, a

spectral residual approach based on the Fourier transform
was recently proposed by Hou and Zhang (2008b). The
spectral residual approach does not rely on parameters and
detects saliency rapidly. In this approach, the difference
between the log spectrum of an image and its smoothed
version is the spectral residual of the image. However,
Guo, Ma, and Zhang (2008) claimed that what plays an
important role for saliency detection is not spectral
residual, but the image’s phase spectrum. Recently, Hou
and Zhang (2008a) proposed a dynamic visual attention
model by setting up an objective function to maximize the
entropy of the sampled visual features based on the
incremental coding length.

Overview of the proposed approach

In this paper, our contributions to the saliency detection
task are three-fold. First we propose to use local
regression kernels as features which, fundamentally differ
from conventional filter responses, but capture the under-
lying local structure of the data exceedingly well, even in
the presence of significant distortions. Second, instead of
using parametric models, we propose to use a non-
parametric kernel density estimation for such features,
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which results in a saliency map constructed from a local
“self-resemblance” measure, indicating likelihood of
saliency. Lastly, we provide a simple, but powerful unified
framework for both static and space-time saliency detec-
tion. These contributions, which we will highlight at the
end of this section, are evaluated in Experimental results
section in terms of predicting human eye fixation data in
both commonly used image (Bruce & Tsotsos, 2006) and
video (Itti & Baldi, 2006) data sets. The original
motivation behind these contributions is the earlier work
on adaptive kernel regression for image and video
reconstruction (Takeda, Farsiu, & Milanfar, 2007; Takeda,
Milanfar, Protter, & Elad, 2009) and nonparametric object
detection (Seo & Milanfar, 2009a) and action recognition
(available online from http://users.soe.ucsc.edu/~milanfar/
publications; Seo & Milanfar, under review).
As similarly done in Gao et al. (2008), we measure

saliency at a pixel in terms of how much it stands out from
its surroundings. To formalize saliency at each pixel, we
let the binary random variable yi denote whether a pixel
position xi = [x1; x2]i

T is salient or not as follows:

yi ¼
1; if xi is salient;

0; otherwise;

(
ð1Þ

where i = 1,I, M, and M is the total number of pixels in
the image. Motivated by the approach in Zhang et al.
(2008) and Oliva et al. (2003), we define saliency at pixel
position xi as a posterior probability Pr(yi = 1|F) as
follows:

Si ¼ Prðyi ¼ 1kFÞ; ð2Þ

where the feature matrix, Fi = [fi
1,I, fi

L] at pixel of
interest xi (what we call a center feature,) contains a set of
feature vectors (fi) in a local neighborhood where L is
the number of features in that neighborhood. (Note that if
L = 1, we use a single feature vector. Using a feature
matrix consisting of a set of feature vectors provides more
discriminative power than using a single feature vector as
also pointed out in Wu and Nevatia, 2007 and Bregonzio,
Gong, & Xiang, 2009.) In turn, the larger collection of
features F = [F1,I, FN] is a matrix containing features not
only from the center, but also a surrounding region (what
we call a center + surround region; see Figure 2). N is the
number of feature matrices in the center + surround region.
Using Bayes’ theorem, Equation 2 can be written as

Si ¼ Pr yi ¼ 1kFð Þ ¼ pðFkyi ¼ 1ÞPrðyi ¼ 1Þ
pðFÞ : ð3Þ

Figure 1. Graphical overview of saliency detection system: (A) static saliency map, (B) space-time saliency map. Note that the number of
neighboring features N in (B) is obtained from a space-time neighborhood.

Journal of Vision (2009) 9(12):15, 1–27 Seo & Milanfar 3

http://users.soe.ucsc.edu/~milanfar/publications
http://users.soe.ucsc.edu/~milanfar/publications


By assuming that 1) a-priori, every pixel is considered to
be equally likely to be salient; and 2) p(F) are uniform
over features, the saliency we defined boils down to the
conditional probability density p(F|yi = 1).
Since we do not know the conditional probability

density p(F|yi = 1), we need to estimate it. It is worth
noting that Gao et al. (2008) and Zhang et al. (2008) fit
the marginal density of local feature vectors p(f) to a
generalized Gaussian distribution. However, in this paper,
we approximate the conditional density function p(F|yi = 1)
based on nonparametric kernel density estimation which
will be explained in detail in Saliency by self-resemblance
section.
Before we begin a more detailed description, it is

worthwhile to highlight some aspects of our proposed
framework. While the state-of-the art methods (Bruce &
Tsotsos, 2006; Gao et al., 2008; Itti & Baldi, 2006; Zhang
et al., 2008) are related to our method, their approaches
fundamentally differ from ours in the following respects:
1) While they use Gabor filters, DoG filters, or ICA to
derive features, we propose to use local steering kernels
(LSK) which are highly nonlinear but stable in the presence
of uncertainty in the data (Takeda et al., 2007). In addition,
normalized local steering kernels provide a certain invari-
ance as shown in Figures 4 and 15. 2) As opposed to Gao
et al. (2008) and Zhang et al. (2008) which model marginal
densities of band-pass features as a generalized Gaussian
distribution, we estimate the conditional probability density
p(F|yi = 1) using nonparametric kernel density estimation
(see Figure 6). 3) While Itti and Baldi (2006) computed, as
a measure of saliency, KL-divergence between a prior and a
posterior distribution, we explicitly estimate the likelihood
function directly using nonparametric kernel density esti-
mation. 4) Our space-time saliency detection method does
not require explicit motion estimation. 5) The proposed
unified framework can handle both static and space-time
saliency detection. Figure 1 shows an overview of our
proposed framework for saliency detection. To summarize
the operation of the overall algorithm, we first compute the
normalized local steering kernels (space-time local steering
kernels) from the given image (video) I and vectorize them
as f’s. Then, we identify features Fi centered at a pixel of
interest xi, and a set of feature matrices Fj in a center +

surrounding region and compute the self-resemblance
measure (see Equations 16 and 17). The final saliency
map is given as a density map as shown in Figure 1. A
shorter version of this paper (available online from http://
users.soe.ucsc.edu/~milanfar/publications) can be found in
the proceeding of IEEE Conference on Computer Vision
and Pattern Recognition, 1st International Workshop on
Visual Scene Understanding (ViSU09) (Seo & Milanfar,
2009b).
In the next section, we provide further technical details

about the steps outlined above. In Experimental results
section, we demonstrate the performance of the system
with experimental results, and we conclude this paper in
Conclusion and future work section.

Technical details

Local regression kernel as a feature
Local steering kernel (2-D LSK)

The key idea behind local steering kernels is to robustly
obtain the local structure of images by analyzing the
radiometric (pixel value) differences based on estimated
gradients, and use this structure information to determine
the shape and size of a canonical kernel. The local
steering kernel is modeled as

K xl j xið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
detðCp

lÞ
h2

exp
ðxl j xiÞTClðxl j xiÞ

j2h2

( )
;

ClZR2�2; ð4Þ

where l Z {1,I, P}, P is the number of pixels in a local
window; h is a global smoothing parameter (This
parameter is set to 1 and fixed for the all experiments.)
The matrix Cl is a covariance matrix estimated from a
collection of spatial gradient vectors within the local
analysis window around a position xl = [x1; x2]l

T. More

Figure 2. Illustration of difference between Gao et al.’s (2008) approach and our approach about a center-surround definition.
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specifically, the covariance matrix Cl can be first naively
estimated as Jl

TJl with

Jl ¼
zx1ðx1Þ; zx2ðx1Þ
s s

zx1ðxPÞ; zx2ðxPÞ

2
6664

3
7775; ð5Þ

where zx1(I) and zx2(I) are the first derivatives along x1-;
and x2-axes. For the sake of robustness, we compute a
more stable estimate of Cl by invoking the singular value
decomposition (SVD) of Jl with regularization as (Takeda
et al., 2007; Seo & Milanfar, 2009a)

Cl ¼ +
X2
q¼1

a2qvqv
T
qZRð2�2Þ; ð6Þ

with

a1 ¼ s1 þ 1V

s2 þ 1V
; a2 ¼ s2 þ 1V

s1 þ 1V
; + ¼ s1s2 þ 1VV

P

� �!

;

ð7Þ
where 1Vand 1W are parameters (1Vand 1W are set to 1 and
10j7 respectively, and they are fixed for all experiments.)
that dampen the noise effect and keep the denominators of
aq’s from being zero, and ! is a parameter (! is set to 0.008
and fixed for all experiments.) that restricts + . The singular
values (s1, s2) and the singular vectors (v1, v2) are given by
the compact SVD of Jl = UlSlVl

T = Uldiag[s1, s2]l[v1, v2]l
T.

Figure 3 illustrates that how covariance matrices and LSK
values are computed in an edge region.

Space-time local steering kernel (3-D LSK)

Now, we introduce the time axis to the data model so
that xl = [x1, x2, t]l

T: x1 and x2 are the spatial coordinates,

t is the temporal coordinate. The approach is fundamen-
tally the same as in 2-D. Again, the covariance matrix Cl

can be naively estimated as Jl
TJl with

Jl ¼
zx1ðx1Þ; zx2ðx1Þ; ztðx1

Þ
s s s

zx1ðxPÞ; zx2ðxPÞ; ztðxP
Þ

2
6664

3
7775; ð8Þ

where zx1(I), zx2(I), and zt(I) are the first derivatives along
x1-, x2-, and t-axes, and P is the total number of samples in
a space-time local analysis window (or cube) around a
sample position at xi. As similarly done in 2-D case, Cl is
estimated by invoking the singular value decomposition
(SVD) of Jl with regularization as (Takeda et al., 2009):

Cl ¼ +
X3
q¼1

a2qvqv
T
qZRð3�3Þ; ð9Þ

with

a1 ¼ s1 þ 1Vffiffiffiffiffiffiffiffi
s2s3

p þ 1V
; a2 ¼ s2 þ 1Vffiffiffiffiffiffiffiffi

s1s3
p þ 1V

;

a3 ¼ s3 þ 1Vffiffiffiffiffiffiffiffi
s1s2

p þ 1V
; + ¼ s1s2s3 þ 1VV

P

� �!

; ð10Þ

where 1Vand 1W are parameters that dampen the noise effect
and restrict + and the denominators of aq’s from being zero.
As mentioned earlier, the singular values (s1, s2, and s3)
and the singular vectors (v1, v2, and v3) are given by the
compact SVD of Jl = UlSlVl

T = Uldiag[s1, s2, s3]l[v1, v2, v3]l
T.

The covariance matrix Cl modifies the shape and size of
the local kernel in a way which robustly encodes the
space-time local geometric structures present in the video

Figure 3. Graphical description of how LSK values centered at pixel of interest x13 are computed in an edge region. Note that each pixel
location has its own C computed from gradient vector field within a local window.
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(see Figure 4b for an example). Similarly to 2D case, 3-D
LSKs are formed as follows:

K xl j xið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
detðCp

lÞ
h2

exp
ðxl j xiÞTClðxl j xiÞ

j2h2

( )
;

ClZRð3�3Þ: ð11Þ

In the 3-D case, orientation information captured in
3-D LSK contains the motion information implicitly
(Takeda et al., 2009). It is worth noting that a significant
strength of using this implicit framework (as opposed to
the direct use of estimated motion vectors) is the
flexibility it provides in terms of smoothly and adaptively
changing the parameters defined by the singular values in
Equation 10. This flexibility allows the accommodation of
even complex motions, so long as their magnitudes are not
excessively large.
Figure 4 illustrates how well local steering kernels

capture both 2-D and 3-D local underlying geometric
structure. As we can see from Equations 4 and 11, the
values of the kernelK are based on the covariance matrices
Cl along with their spatial locations xl. Intuitively, Cl’s in
the local analysis window are similar to one another in the
flat region. Therefore, only spatial locations affect the

kernel shape, which looks more or less symmetric or
isotropic in the flat region. On the other hand, in the edge
region, the kernel size and shape depend on both Cl and
its spatial location xl in the local window. Thus, high
values in the kernel are yielded along the edge region
whereas the rest of kernel values are near zero. For a more
in depth analysis of local steering kernels, we refer the
interested reader to Takeda et al. (2007) and Takeda et al.
(2009).
In what follows, at a position xi, we will essentially be

using (a normalized version of) the function K(xl j xi).
To be more specific, the local steering kernel function
K(xl j xi) is calculated at every pixel location and
normalized as follows

Wi ¼
Kðxl j xiÞPP
l¼1 Kðxl j x

i
Þ; i ¼ 1; >;M: ð12Þ

Thanks to an accurate estimation of the local covariance
matrix Cl, LSK features are robust against signal
uncertainty such as presence of noise. In addition, the
normalized version of LSKs provides certain invariance to
illumination changes as shown in Figure 5.
As mentioned earlier, what we do next is to construct

the feature matrix Fi by using fVs which are a vectorized

Figure 4. (a) Examples of 2-D LSK in various regions. (b) Examples of space-time local steering kernel (3-D LSK) in various regions. Note
that key frame means the frame where the center of 3-D LSK is located.
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version of W’s. More specifically, we collect fi
j in a local

window (say, 3 � 3) centered at the pixel of interest xi,
where j = 1,I, 9. Then, in a larger window (say, 5 � 5)
also centered at xi, center + surround feature matrices
F= [F1,I, F25] are obtained. In the following section, we
explain how we nonparametrically estimate the condi-
tional probability density p(F|yi = 1) discussed in Over-
view of the proposed approach section.

Saliency by self-resemblance

As we alluded to in Overview of the proposed approach
section, saliency at a pixel xi is measured using the
conditional density of the feature matrix at that position:
Si = p(F|yi = 1). Hence, the task at hand is to estimate
p(F|yi = 1) over i = 1,I, M. In general, the Parzen density
estimator is a simple and generally accurate non-
parametric density estimation method (Silverman, 1986).
However, in higher dimensions and with an expected
long-tail distribution, the Parzen density estimator with an
isotropic kernel is not the most appropriate tool (Bengio,
Larochelle, & Vincent, 2005; Brox, Rosenhahn, &
Cremers, 2007; Vincent & Bengio, 2003). As explained

earlier, the LSK features tend to generically come from
long-tailed distributions, and as such, there are generally
no tight clusters in the feature space. When we estimate a
probability density at a particular feature point, for
instance Fi = [fi

1,I, fi
L] (where Lis the number of

vectorized LSKs (f’s) employed in the feature matrix),
the isotropic kernel centered on that feature point will
spread its density mass equally along all the feature space
directions, thus giving too much emphasis to irrelevant
regions of space and too little along the manifold. Earlier
studies (Bengio et al., 2005; Brox et al., 2007; Vincent &
Bengio, 2003) also pointed out this problem. This
motivates us to use a locally data-adaptive kernel density
estimator. We define the conditional probability density
p(F|yi = 1) at xi as a center value of a normalized adaptive
kernel (weight function) G(I) computed in the center +
surround region as follows:

Si ¼ p̂ Fkyi ¼ 1ð Þ ¼ Gið�Fi j �FiÞPN
j¼1Gið�Fi j �FjÞ

; ð13Þ

Inspired by earlier works such as Fu and Huang (2008),
Fu, Yan, and Huang (2008), Ma, Lao, Takikawa, and
Kawade (2007) and Seo and Milanfar (2009a) that have

Figure 5. Invariance and robustness of LSK weights Win various challenging conditions. Note that WGN means White Gaussian Noise.
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shown the effectiveness of correlation-based similarity,
the kernel function Gi in Equation 13 can be defined by
using the concept of matrix cosine similarity (Seo &
Milanfar, 2009a) as follows:

Gi
�Fi j �Fj
� � ¼ exp

j¬�Fi j �Fj¬
2
F

2A2

� �

¼ exp
j1þ >ðFi;FjÞ

A2

 !
; j ¼ 1; >;N;

ð14Þ

where �Fi =
1

ËFiËF [fi
1,I fi

L] and �Fj =
1

ËFjËF [fj
1,I fj

L], k I kF
is the Frobenius norm, and A is a parameter (This
parameter is set to 0.07 and fixed for all the experiments.)
controlling the fall-off of weights. Here, >(Fi, Fj) is
the “Matrix Cosine Similarity (MCS)” between two
feature matrices Fi, Fj and is defined as the “Frobenius
inner product” between two normalized matrices

(>(Fi, Fj) = bFi, FjÀF = trace (
FT

i Fj

ËFiËFËFjËF) Z [j1, 1].) This

matrix cosine similarity can be rewritten as a weighted
sum of the vector cosine similarities (Fu & Huang, 2008;

Fu et al., 2008; Ma et al., 2007) >(fi, fj) between each pair
of corresponding feature vectors (i.e., columns) in Fi, Fj

as follows:

>i ¼
XL
: ¼1

f :
T

i f :j
¬Fi¬F¬Fj¬F

¼
XL
: ¼1

> f :i ; f
:
j

� � ¬f :i ¬¬f
:

j ¬

¬Fi¬F¬Fj¬F
:

ð15Þ
The weights are represented as the product of

Ëf :i Ë
ËFiËF and

Ëf :j Ë
ËFjËF

which indicate the relative importance of each feature in
the feature sets Fi, Fj. This measure not only generalizes
the cosine similarity, but also overcomes the disadvan-
tages of the conventional Euclidean distance which is
sensitive to outliers (This measure can be efficiently
computed by column-stacking the matrices Fi, Fj and
simply computing the cosine similarity between two
long column vectors.) By inserting Equation 14 into
Equation 13, Si can be rewritten as follows:

Si ¼ 1PN
j¼1 exp

j1 þ >ðFi;FjÞ
A2

� � : ð16Þ

Figure 6. Example of saliency computation in natural gray-scale image. The estimated probability density p̂ (F|yi = 1) at the point 1
(0.12) is much higher than ones (0.043) and (0.04) at the point 3 and point 4, which depicts that the point 1 is more salient than point 3 and
point 4. Note that red values in saliency map represent higher saliency, while blue values mean lower saliency.
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Figure 6 describes what normalized kernel functions Gi

look like in various regions of a natural image. As shown
in Figure 6, at xi (that is, Si = p̂(F|yi = 1)) can be
explained by the peak value of the normalized weight
function Gi which contains contributions from all the
surrounding feature matrices. In other words, p̂(F|yi = 1)
reveals how salient Fi is given all the features Fj’s in a
neighborhood.

Handling color images

Up to now, we only dealt with saliency detection in a
grayscale image. If we have color input data, we need an
approach to integrate saliency information from all color
channels. To avoid some drawbacks of earlier methods
(Itti et al., 1998; Meur, Callet, & Barba, 2007), we do not
combine saliency maps from each color channel linearly
and directly. Instead we utilize the idea of matrix cosine
similarity. More specifically, we first identify feature
matrices from each color channel c1, c2, c3 as Fi

c1, Fi
c2,

Fi
c3 as shown in Figure 7. By collecting them as a larger

matrix Fi = [Fi
c1, Fi

c2, Fi
c3], we can apply matrix cosine

similarity between Fi and Fj. Then, the saliency map from
color channels can be analogously defined as follows:

Si ¼ p̂ Fkyi ¼ 1ð Þ ¼ 1PN
j¼1 exp

j1 þ >ðFi;FjÞ
A2

� � : ð17Þ

In order to verify that this idea allows us to achieve a
consistent result and leads us to a better performance than
using fusion methods, we have compared three different
color spaces; namely opponent color channels (vande
Sande, Gevers, & Snoek, 2008), CIE L*a*b* (Seo &
Milanfar, 2009a; Shechtman & Irani, 2007) channels, and
I R-G B-Y channels (Zhang et al., 2008) (opponent color
space has proven to be superior to RGB, HSV, normalized
RGB, and more in the task of object and scene recognition
(vande Sande et al., 2008). Shechtman and Irani (2007)
and Seo and Milanfar (2009a) showed that CIE L*a*b*
performs well in the task of object detection.)
Figure 8 compares saliency maps using simple normal-

ized summation of saliency maps from different chan-
nels as compared to using matrix cosine similarity. It is
clearly seen that using matrix cosine similarity provides

Figure 7. As an example of saliency detection in a color image (in this case, CIE L*a*b*), we show how saliency is computed using matrix
cosine similarity.
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consistent results regardless of color spaces and helps to
avoid some drawbacks of fusion-based methods. To sum-
marize, the overall pseudo-code for the algorithm is given
in Algorithm 1.

Experimental results

In this section, we demonstrate the performance of the
proposed method with comprehensive experiments in

terms of 1) interest region detection; 2) prediction of
human fixation data; and 3) performance on psychological
patterns. Comparison is made with other state-of-the-art
methods both quantitatively and qualitatively.

Interest region detection
Detecting proto-objects in images

In order to efficiently compute the saliency map, we
downsample an image I to an appropriate coarse scale
(64 � 64) (changing the scale leads to a different result in
the saliency map. Assume that we use a 3 � 3 LSK and

Figure 8. Comparisons between (1) Simple normalized summation and (2) The use of matrix cosine similarity without any fusion in three
different color spaces. Simple normalized summation method tends to be dominated by a particular chrominance information. It is clearly
shown that using matrix cosine similarity provides consistent results than the simple normalized summation fusion method.

I: input image or video, P: size of local steering kernel (LSK) or 3-D LSK window, h: a global smoothing parameter for LSK, L: number of
LSK or 3-D LSK used in the feature matrix, N: size of a center + surrounding region for computing self-resemblance, A: a parameter
controlling fall-off of weights for computing self-resemblance.

Stage 1: Compute Features
if I is an image then
Compute the normalized LSK Wi and vectorize it to fi, where i = 1,I, M.

else
Compute the normalized 3-D LSK Wi and vectorize it to fi, where i = 1,I, M.

end if
Stage 2: Compute Self-Resemblance
for i = 1,I, M do
if I is a grayscale image (or video) then
Identify feature matrices Fi, Fj in a local neighborhood.
Si ¼ 1PN

j¼1
exp j1þ>ðFi ;FjÞA2ð Þ

else
Identify feature matrices Fi = [Fi

c1, Fi
c3, Fi

c3] and Fj = [Fj
c1, Fj

c3, Fj
c3] in a local neighborhood from three color channels.

Si ¼ 1
~N
j¼1

exp j1þ>ðFi ;FjÞA2ð Þ
end if

end for
Output: Saliency map Si, i = 1,I, M

Algorithm 1. Visual saliency detection algorithm.
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Figure 9. Some examples of proto-objects detection in face images (http://www.facedetection.com/facedetection/datasets.htm).

Figure 10. Some examples of proto-objects detection in natural scene images (Hou & Zhang, 2008b).
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5 � 5 local analysis window for F. If the visual search
is performed at a fine scale, finer detail will be
captured as salient whereas at a coarser scale, larger
objects will be considered to be salient. As expected,
computing saliency map at a finer scale takes longer.
In fact, we have tried to combine saliency maps from
multi-scale, but this idea did not improve performance
even at the expense of time complexity. This brings up
an interesting question worth considering for future
research; namely; what is the optimal resolution for
saliency detection? Clearly, higher resolution images do
not imply better saliency maps.) We then compute
LSK of size 3 � 3 as features and generate feature
matrices Fi in a 5 � 5 local neighborhood. The number of
LSK used in the feature matrix Fi is set to 9. For all the
experiments, the smoothing parameter h for computing
LSK was set to 1 and the fall-off parameter Afor
computing self-resemblance was set to 0.07. We obtained
an overall saliency map by using CIE L*a*b* color space
throughout all the experiments. A typical run time takes
about 1 second at scale (64 � 64) on an Intel Pentium 4,
2.66 GHz core 2 PC with 2 GB RAM.
From the point of view of object detection, saliency

maps can explicitly represent proto-objects. We use the
idea of non-parametric significance testing to detect
proto-objects. Namely, we compute an empirical PDF
from all the saliency values and set a threshold so as to
achieve, for instance, a 95% significance level in
deciding whether the given saliency values are in the
extreme (right) tails of the empirical PDF. The approach
is based on the assumption that in the image, a salient
object is a relatively rare object and thus results in
values which are in the tails of the distribution of
saliency values. After making a binary object map by
thresholding the saliency map, a morphological filter is
applied. More specifically, we dilate the binary object
map with a disk shape of size 5 � 5. Proto-objects are
extracted from corresponding locations of the original
image. Multiple objects can be extracted sequentially.
Figure 9 shows that the proposed method works well in
detecting proto-objects in the images which contain a
group of people in a complicated cluttered background. In

order to quantitatively evaluate the performance of our
method in terms of finding proto-objects, we also tested
our method on Hou and Zhang’s data set (Hou & Zhang
2008b). This data set contains 62 natural scene images and
ground truth images (G) labeled by 4 naive human
subjects. Figure 10 also illustrates that our method
accurately detects salient objects in natural scenes (Hou
& Zhang, 2008b). For the sake of completeness, we
compute the Hit Rate(HR) and the False Alarm Rate
(FAR) as follows:

HR ¼ E
Y
k

Gk
i � Oi

 !
; ð18Þ

FAR ¼ E
Y
k

ð1j Gk
i Þ � Oi

 !
; ð19Þ

where O is a proto-objects map, k is the image index.
From Table 1, we observe that our method overall
outperforms Hou and Zhang’s method (downloadable
from http://bcmi.sjtu.edu.cn/~houxiaodi/) (Hou & Zhang,
2008b) and Itti’s method (downloadable from http://www.
saliencytoolbox.net/) (Itti et al., 1998).

Detecting actions in videos

The goal of action recognition is to classify a given
action query into one of several pre-specified categories.
Here, a query video may include a complex background
which deteriorates recognition accuracy. In order to deal
with this problem, it is necessary to have a procedure
which automatically segments from the query video a
small cube that only contains a valid action. Space-time
saliency can provide such a mechanism. In order to
compute the space-time saliency map, we only use the
illumination channel because color information does not
play a vital role in detecting motion saliency. We down-
sample each frame of input video I to a coarse spatial
scale (64 � 64) in order to reduce the time-complexity
(we do not downsample the video in the time domain.)
We then compute 3-D LSK of size 3 � 3 � 3 as features
and generate feature matrices Fi in a (3 � 3 � 7) local
space-time neighborhood. The number of 3-D LSK used
in the feature matrix Fi is set to 1 for time efficiency. The
procedure for detecting space-time proto-objects and the
rest of parameters remain the same as in the 2-D case. A
typical run of space-time saliency detection takes about
52 seconds on 50 frames of a video at spatial scale (64 �
64) on an Intel Pentium 4, 2.66 GHz core 2 PC with 2 GB
RAM.

Our
method

Hou and Zhang
(2008b) Itti et al. (1998)

HR 0.5933 0.4309 0.2482
Fixed FAR 0.1433 0.1433 0.1433

Fixed HR 0.5076 0.5076 0.5076
FAR 0.1048 0.1688 0.2931

Table 1. Performance comparison of the methods on finding
proto-objects in Hou and Zhang’s data set (Hou & Zhang, 2008b).
We compare HR and FAR of three methods at a fixed FAR and a
fixed HR respectively.
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Figure 11 shows that the proposed space-time saliency
detection method successfully detects only salient human
actions in both the Weizmann data set (Gorelick, Blank,
Shechtman, Irani, & Basri, 2007) and the KTH data set

(Schuldt, Laptev, & Caputo, 2004). Our method is also
robust to the presence of fast camera zoom in and out as
shown in Figure 12 where a man is performing a boxing
action while a camera zoom is activated.

Figure 11. Some examples of detecting salient human actions in the video: (a) the Weizmann data set (Gorelick et al., 2007) and (b) the
KTH data set (Schuldt et al., 2004).
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Predicting human visual fixation data
Static images

In this section, we used an image database and its
corresponding fixation data collected by Bruce and
Tsotsos (2006) as a benchmark for quantitative perfor-
mance analysis and comparison. This data set contains eye
fixation records from 20 subjects for a total of 120 images
of size 681 � 511. The parameter settings are the same as
explained in Interest region detection section. Some visual
results of our model are compared with state-of-the-art
methods in Figure 13. As opposed to Bruce’s method
(Bruce & Tsotsos, 2006) which is quite sensitive to
textured regions, and SUN (Zhang et al., 2008) which is
somewhat better in this respect, the proposed method is
much less sensitive to background texture. To compare
the methods quantitatively, we also computed the area
under receiver operating characteristic (ROC) curve, and
KL-divergence by following the experimental protocol of
Zhang et al. (2008). In Zhang et al. (2008), Zhang et al.
pointed out that the data set collected by Bruce and
Tsotsos (2006) is center-biased and the methods by Itti
et al. (1998), Bruce and Tsotsos (2006) and Gao et al.

(2008) are all corrupted by edge effects which resulted in
relatively higher performance than they should have (see
Figure 14.). We compare our model against Itti et al.
(1998) (downloadable from http://ilab.usc.edu/toolkit/
home.shtml), Bruce and Tsotsos (2006) (downloadable
from http://www-sop.inria.fr/members/Neil.Bruce/
#SOURCECODE), Gao et al. (2008), and SUN (down-
loadable from http://www.roboticinsect.net/index.htm)
(Zhang et al., 2008). For the evaluation of the algorithm,
we used the same procedure as in Zhang et al. (2008).
More specifically, we first compute true positives from the
saliency maps based on the human eye fixation points. In
order to calculate false positives from the saliency maps,
we use the human fixation points from other images by
permuting the order of images. This permutation of
images is repeated 100 times. Each time, we compute
KL-divergence between the histograms of true positives
and false positives and average them over 100 trials.
When it comes to calculating the area under the ROC
curve, we compute detection rates and false alarm rates by
thresholding histograms of true positives and false
positives at each stage of shuffling. The final ROC area
shown in Table 2 is the average value over 100

Figure 12. Space-time saliency detection even in the presence of fast camera zoom-in. Note that a man is performing a boxing action
while a camera zoom is activated.
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Figure 13. Examples of saliency maps with comparison to the state-of-the-art methods. Human fixation density maps are derived from
human eye fixation data and are shown right below the original images. Visually, our method outperforms other state-of-the-art methods.
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Figure 13. continued
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Figure 13. continued
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Figure 13. continued
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permutations. The mean and the standard errors are also
reported in Table 2. Our model outperforms all the other
state-of-the-art methods in terms of both KL-divergence
and ROC area.
& As we alluded to Local regression kernel as a feature

section earlier, our LSK features are robust to the presence
of noise and changes in brightness and contrast. Figure 15
well demonstrates that the self-resemblance maps based
on LSK features are not influenced by various distortions
such as white-color noise, contrast change, and brightness
change.
& We further examined how the performance of the

proposed method is affected by the choice of param-
eters such as 1) N: size of center + surrounding region
for computing self-resemblance; 2) P: size of LSK; and
3) L: number of LSK used in the feature matrix. As shown
in Figure 16, it turns out that as we increase N, the overall
performance is improved while increasing P and L rather
deteriorates the performance. Overall, the best perfor-
mance was achieved with the choice of P = 3 � 3 = 9;
L = 3 � 3 = 9; and N = 7 � 7 = 49 at the expense of
increased runtime.
It is important to note that while the LSK size (P) and

the number of LSK (L) determine a feature dimension, the
surrounding size (N) affects how many surrounding
feature matrices would be compared with the center
feature matrix. We do not wish to increase feature
dimensions unnecessarily. Instead, we keep the surround-
ing size large enough so that we could get a reasonable
self-resemblance value.

Response to psychological pattern

We also tested our method on psychological patterns.
Psychological patterns are widely used in attention
experiments not only to explore the mechanism of visual
search, but also to test effectiveness of saliency maps
(Treisman & Gelade, 1980; Wolfe, 1994). As shown in
Figure 17, whereas SUN (Zhang et al., 2008) and Bruce’s
method (Bruce & Tsotsos, 2006) failed to capture
perceptual differences in most cases, Gao’s method (Gao
et al., 2008) and Spectral Residual (Hou & Zhang, 2008b)

tend to capture perceptual organization rather better.
Overall, however, the proposed saliency algorithm out-
performs other methods in all cases including closure
pattern (Figure 17a) and texture segregation (Figure 17b)
which seem to be very difficult even for humans to
distinguish.
The proposed method also predicts search asymmetry

(Treisman & Gelade, 1980) well. As shown in Figure 18,
it is evident that our method mimics the human tendency
of finding a Q (or a plus) among Os (or dashes) to be
easier than finding an O (or a dash) among Qs (pluses).

Dynamic scenes

In this section, we quantitatively evaluate our space-
time saliency algorithm on the human fixation video data
from Itti et al. (2005). This data set consists of a total of
520 human eye-tracking data traces recorded from 8
distinct subjects watching 50 different videos (TV pro-
grams, outdoors, test stimuli, and video games: about
25 minutes of total playtime). Each video has a resolution
of size 640 � 480. Eye movement data was collected
using an ISCAN RK-464 eye-tracker. For evaluation, two
hundred (four subjects � fifty video clips) eye movement
traces were used (see Itti & Baldi, 2005 for more details).
As similarly done earlier, we computed the area under
receiver operating characteristic (ROC) curve, and the
KL-divergence. We compare our model against Bayesian
Surprise (Itti et al., 1998) and SUNDAy (Zhang et al.,
2009). Note that human eye movement data collected by

Model KL (SE) ROC (SE)

Itti et al. (1998) 0.1130 (0.0011) 0.6146 (0.0008)
Bruce and Tsotsos (2006) 0.2029 (0.0017) 0.6727 (0.0008)
Gao et al. (2008) 0.1535 (0.0016) 0.6395 (0.0007)
Zhang et al. (2008) 0.2097 (0.0016) 0.6570 (0.0008)
Hou and Zhang (2008b) 0.2511 (0.0019) 0.6823 (0.0007)
Our method 0.2779 (0.002) 0.6896 (0.0007)

Table 2. Performance in predicting human eye fixations when
viewing videos color images. SE means standard errors.

Figure 14. Comparison of average saliency maps on human fixation data by Bruce and Tsotsos (2006). Averages were taken across the
saliency maps for a total of 120 color images. Note that Bruce et al.’s method (Bruce & Tsotsos, 2006) exhibits zero values at the image
borders while SUN (Zhang et al., 2008) and our method do not have edge effects.
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Itti et al. (2005) is also center-biased and Bayesian
Surprise (Itti & Baldi, 2005) is corrupted by edge effects
which resulted in relatively higher performance than it
should have. For the evaluation of the algorithm, we first
compute true positives from the saliency maps based on
the human eye movement fixation points. In order to

calculate false positives from the saliency maps, we use
the human fixation points from frames of other videos by
permuting the order of video. This permutation of images
is repeated 10 times. Each time, we compute KL-
divergence between the histograms of true positives and
false positives and average them over 10 trials. When it

Figure 16. Performance comparison on human fixation data by Bruce and Tsotsos (2006) with respect to the choice of 1) N: size of center
+ surrounding region for computing self-resemblance; 2) P: size of LSK; and 3) L: number of LSK used in the feature matrix. Run time on
one image is shown on top of each bar.

Figure 15. Our saliency model is largely unaffected by various distortions such as white-color noise, brightness change, and contrast
change.
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Figure 17. Examples of Saliency map on psychological patterns. (a) Images are from Hou and Zhang (2008b). (b) Images are from
Gao et al. (2008).
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comes to calculating the area under the ROC curve, we
compute detection rates and false alarm rates by thresh-
olding histograms of true positives and false positives at
each time of shuffling. The mean ROC area and the mean
KL-divergence are reported in Table 3. Some visual
results of our model are shown in Figure 19. Our model
outperforms Bayesian Surprise and SUNDAy in terms of
both KL-divergence and ROC area. It seems at first
surprising that our KL-divergence value is much higher
than Bayesian (Itti & Baldi, 2005) and SUNDAy (Zhang
et al., 2009) while there is a rather smaller difference
between ROC areas. However, this phenomenon can be
explained as follows. While the range of ROC area is
limited from 0 to 1, the range of KL-divergence is from 0
to V. The KL-divergence is asymptotically related to the
probability of detection and false alarm rate and provides
an upper bound on the detection performance (Kullback,
1968; Shahram, 2005). Namely, as the number of samples

increases, Pf(1 j Pd) Y exp(j!J), where ! is a constant
and J is KL-divergence. Even though there is a large
difference between KL-divergence values, the difference
in ROC area can be relatively small.
Our model is simple, but very fast and powerful. In terms

of time complexity, a typical run time takes about 8 minutes
(Zhang et al., 2009 reported that their method runs in

Figure 18. Example of asymmetry. (Top: The task of finding a Q among Os is easier than finding an O among Qs. Bottom: The task of
finding a plus among dashes is easier than finding a dash among plus.) This effect demonstrates a specific example of search asymmetry
discussed in Treisman and Gelade (1980).

Model KL (SE) ROC (SE)

Bayesian Surprise
(Itti & Baldi, 2005)

0.034 0.581

SUNDAy (Zhang et al., 2009) 0.041 0.582
Our method 0.262 (0.0085) 0.589 (0.0031)

Table 3. Performance in predicting human eye fixations when
viewing videos (Itti & Baldi, 2005).
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Figure 19. Some results on the video data set (Itti & Baldi, 2005): (a) video clips, (b) space-time saliency map, (c) a frame from (a), (d) a
frame superimposed with corresponding saliency map from (b).
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Figure 19. continued
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Matlab on a video of about 500 frames in minutes on a
Pentium 4, 3.8 GHz dual core PC with 1 GB RAM) on a
video of size of 640 � 480 with about 500 frames while
Bayesian Surprise requires hours because there are 432,000
distributions that must be updated with each frame.

Discussion

In the previous section, we have provided comprehensive
experimental results which show that our method consis-
tently outperforms other state-of-the art methods. It is worth
noting that we estimate saliency by using non-parametric
density estimation, while other competing methods (Gao
et al., 2008; Itti et al., 1998; Torralba et al., 2008; Zhang
et al., 2008) focused on fitting the conditional probability
density function to a parametric distribution. In other
words, we do not assume a distributional form or model
for the data. As such, we call our method non-parametric.
Even though we have a few parameters such as h, A, and 1,
these parameters are mostly set and fixed for all the
experiments. Our model is somewhat similar to Gao et al.
(2008) in the sense that a center-surround notion is used to
compute saliency. One of the most important factors which
makes the proposed method more effective is the use of
LSKs as features. LSKs can capture local geometric
structure exceedingly well even in the presence of signal
uncertainty. In addition, unlike standard fusion methods
which linearly and directly combine saliencymaps computed
from each color channel, we used the matrix cosine similarity
to combine information from three color spaces. Our
comprehensive experimental results indicate that the self-
resemblance measure derived from a locally data-adaptive
kernel density estimator is much more effective and simpler
than other existingmethods and does not require any training.
Although our method is built entirely on computational
principles, the resultingmodel structure exhibits considerable
agreement with fixation behavior of the human visual system.
With very good features like LSKs, the center-surround
model is arguably an effective computational model of how
the human visual system works.

Conclusion and future work

In this paper, we have proposed a unified framework for
both static and space-time saliency detection algorithm by
employing 2-D and 3-D local steering kernels; and by
using a nonparametric kernel density estimation based on
(Matrix Cosine Similarity) (MCS). The proposed method
can automatically detect salient objects in the given image
and salient moving objects in videos. The proposed
method is practically appealing because it is nonparamet-

ric, fast, and robust to uncertainty in the data. Experiments
on challenging sets of real-world human fixation data
(both images and videos) demonstrated that the proposed
saliency detection method achieves a high degree of
accuracy and improves upon state-of-the-art methods. Due
to its robustness to noise and other systemic perturbations,
we also expect the present framework to be quite effective
in other applications such as image quality assessment,
background subtraction in dynamic scene, and video
summarization.
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