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Ecological Sampling of Gaze Shifts

Giuseppe Boccignone and Mario Ferraro

Abstract—Visual attention guides our gaze to relevant parts a computational model of visual attention and eye guidance
of the viewed scene, yet the moment-to-moment relocation of should predict where will the eyes select the target of the
gaze can be different among observers even though the sameneayt fixation by providing: i) a mappingewed scene — gaze
locations are taken into account. Surprisingly, the varialility of L . ;
eye movements has been so far overlooked by the great majorit Sequence' ”)_a procedure_ that implements S_UCh mapplng_. One
of computational models of visual attention. paradigmatic example is the most prominent model in the

In this paper we present the Ecological Sampling model, a literature proposed by Ittet al [5]. In this model, attention
stochastic model of eye guidance explaining such variabii  deployment is explained in terms of visual salience as the
The gaze shift mechanism is conceived as an active randomOutput of a competitive process between a set of basic intra

sampling that the "foraging eye” carries out upon the visual . - . -
landscape, under the constraints set by the observable faats features. Eye guidance is conceived as a Winner-Take-All

and the global complexity of the landscape. By drawing on radts  (WTA) selection of most salient locations.

reported in the foraging literature, the actual gaze relocdion is Nevertheless, most approaches focus on computing a map-
eventually driven by a stochastic differential equation wiose noise ping from an image, or, less frequently, from an image se-
source is sampled from a mixture ofa-stable distributions. quence to a representation suitable to ground the eye qrédan

This way, the sampling strategy proposed here allows to minai - " h
a fundamental property of the eye guidance mechanism: where process (e.g., see the recent review by Borji and Itti [4ficfS

we choose to look next at any given moment in time is not representation is typically shaped in the form of a saliency
completely deterministic, but neither is it completely rardom map, which is derived either bottom-up, as in [5], or top-
To show that the model yields gaze shift motor behaviors that down modulated by cognitive and contextual factors (e.g.,
exhibit statistics S|m|!ar to those dlsplayed by human obswers, [6], [7]). The saliency map is then evaluated in terms of
we compare simulation outputs with those obtained from eye- . . " . . .
tracked subjects while viewing complex dynamic scenes. its capacity for predicting the 'mage reg'o_ns that W'_" be
explored by covert and overt attentional shifts accordimg t
some evaluation measure [4]. The problem of eye guidance is
somehow neglected or, if needed for practical purposes [8],
it is solved by adopting some deterministic choice procedur
. INTRODUCTION The latter is usually based on theg max operation [9]. The
N this paper we shall consider the problem of the variabilitgforementioned WTA scheme [5], [9], or the selection of the
of visual scanpaths (the sequence of gaze shifts) produgedto-object with the highest attentional weight [10] anet
by human observers. When looking at natural movies und&tamples. Even when probabilistic frameworks are used to
a free-viewing or a general-purpose task, the relocation iafer where to look next, the final decision is often taken via
gaze can be different among observers even though the sah& maximum a posteriori (MAP) criterion, which again is
locations are taken into account. In practice, there is dlsman argmax operation (e.g., [11]-[15]), or variants such as
probability that two observers will fixate exactly the samehe robust mean (arithmetic mean with maximum value) over
location at exactly the same time. Such variations in irttliel  candidate positions [16].
scanpaths (as regards chosen fixations, spatial scanrdeg or Thus, as a matter of fact, the majority of models that have
and fixation duration) still hold when the scene contairtseen proposed so far (with few notable exceptions discussed
semantically rich "objects”. Variability is even exhibitéy the afterward), hardly take into account one fundamental featu
same subject along different trials on equal stimuli. Fertthe characterizing human oculomotor behavior: where we choose
consistency in fixation locations between observers deeseato look next at any given moment in time is not completely
with prolonged viewing [1]. This effect is remarkable whenleterministic, but neither is it completely random [17déed,
free-viewing static images: consistency in fixation looas even though the partial mappingewed scene — salience
selected by observers decreases over the course of the¥irstit taken for granted (which could be questioned under some
fixations after stimulus onset [2] and can become idiosytiwra circumstances, [2]), current accounts of the subsequept st
Challenges: Although the ability to predict where a humani.e. salience — gaze sequence, are still some way from
might fixate elements of a viewed scene has long been eXplaining the complexities of eye guidance behavior. & th
interest in the computational vision community [3], [4]eth work presented here we attempt at filling this gap.
problem in question has hitherto been overlooked. Indeed,Our approach: We assume that the gaze sequence is gen-
. o o . _ . erated by an underlying stochastic process, accounting for
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that describes statistical properties of gaze shifts esebloas speed, thereby keeping the image of the object on or near the
possible. Experimental findings have shown that human gédpeea.

shift amplitude distributions are positively skewed anddo  pixations themselves are not simply the maintenance of the
tailed (e.g., [19]). Drawing on results reported in the 8@ 5,31 gaze on a single location but rather a slow osciltatio
literature, where similar distributions characterizethenent- ¢ o eye [23]. They are never perfectly steady and differen
to-moment relocation of many animal species between apflchanisms can be at their origin, e.g., microsaccades [25]
within food patches [20], [21], we introduce a compositgy s eye fixations are better defined as the amount of contin-

random walk model for the "foraging eye”, which we name,q s time spent looking within a circumscribed region (e.g.

Ecological Sampling (ES). , , minimum 50 milliseconds within a spatially limited region,
The ES scheme, discussed in Section Ill, models the e&Ppically 0.5 — 2.0° degrees of visual angle [26]).

logical exploration undertaken by the "foraging eye” while o .
stochastically sampling a complex time-varying visualdan The variability characterizingow we move the eyes occurs

scape (here an image sequence) represented in termsRjuitously, and it may mediate a variety of motor and
information patches. In the ES model the eye guidance strBceptual phenomena [3], [19]. At a low-level, variapilit
egy amounts to choose where to look next by samplidy Motor responses originates from endogenous stochastic
the appropriate motor behavior (i.e., the action to be takeffriations that affect each stage between a sensory event an
fixating, pursuing or saccading), conditioned on the peemki (e motor response [18]. At this level the issue of stochagti
world and on previous action. More precisely, the appraerid" Scanpaths, debated in early studies [27], [28], may beemor
oculomotor behavior is sampled from a mixture @fstable generally understood on the basis that randomness assumes a
distributions. The choice and the execution of the oculamotUndamental role in adaptive optimal control of gaze shifts

behavior depend upon both the local information propedfes this perspective, variability is an intrinsic part_of thetiopal
patches and their global configuration within the time-imgy CONtrol problem, rather than being simply "noise” [29].
landscape (complexity). At a higher level it might reflect the individual's learnt
To show that the model yields gaze shift motor behaviok®iowledge of the structure of the world, the distribution of
that exhibit statistics similar to those pertaining to humaobjects of interest, and task parameters. The latter factan
observers, in Section IV we compare ES outputs with thobe summarized in terms of oculomotor tendencies or biases
obtained from eye-tracked subjects viewing complex vide¢®9]. Systematic tendencies in oculomotor behavior can be
and collected in a publicly available dataset. thought of as regularities that are common across all iestan
Contributions: The main contributions of this paper lie inof and manipulations to the behavior. Under certain coodsti
the following. 1) A novel and general probabilistic framethese provide a signature of the oculomotor behavior paculi
work for eye guidance on complex time-varying scenes i an individual (the idiosyncrasy of scanpaths [2], [30]).
provided, which revises an early conjecture presented2h [20culomotor biases can also be considered as mechanisms tied
and grounds its assumptions on empirical analysis of eyte- strategies that are optimal to minimize search time and
tracked data. 2) The ES guidance mechanism can minmitaximize accuracy [31].

variability in scanpaths close to that exhibited by human Tatler and Vincent in their elegant study [19] were the

subjects. 3) The scanpath results from the composition ﬂjst to show that exploiting these oculomotor biases, the

random walks whose stochastic part is driven by differe frformance of a salience model can be improved frsif
o-stable components. This allows to treat different types f oo, by including the probability of saccade directions
eye movements within the same framework, thus makinga, 4 amplitudes. Strikingly.

ds th ifiad dell ¢ diff kinds of they found evidence that a rhode
step towards the unified modeling of difterent kinds of gazg, ;o on oculomotor biases alone performs better than the

shifts, which is a recent trend in eye movement researgy 54 salience model. However, they did not providdaeit

[st?]' [24]. ﬁ) Thhe gaze Is c:ﬂ?loyeo: "‘:ct patches, i'ﬁ' Bprot(c)l- formal characterization of the distributions at hand, aor
objects, rather than points (differently from [22]). Thase computational procedure to generate gaze shifts, singe the

eye guidance mechanism could be straightforwardly Integradirectly exploited histograms of saccade directions angdlam

\évéreaep[g]b a[t;;"Stic object or context-based visual aiEmt o gathered from the participants to the experiment.
T Such tendencies can be detected in saccade amplitudes,

Il. BACKGROUND which show a positively skewed, long-tailed distributian i

Eye movements such as saccades and smooth purdl]fSt experimental settings in which complex scenes are
followed by fixations, play an important role in human visionV/€wed [19]. Similarly, long-tailed distributions have ére
They allow high-spatial-frequenaampling of the visual envi- "€Ccently reported on natural movies [1].
ronment by controlling the direction of the foveal projects More generally, the idea of inferring, through sampling,
(the center of best vision) of the two eyes [23]. Frequethe properties of a surrounding, uncertain world (either a
saccades avoid building detailed models of the whole scema&tural landscape or a fictitious one such as a probability
[2] and are a characteristic mode of exploratory movementistribution) can be related to the notion of random walk
across a wide range of species and types of visual systembiased by an external force field. In continuous timei-a

The pursuit system uses information about the speed difmensional random motion of a point, with stochastic posit
a moving object to produce eye movements of comparahig), under the influence of a force field can be described by
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the Langevin stochastic equation [32]

dr(t) = g(r,t)dt + D(r, t)&dt. (1 following:

The trajectory of the variable is determined by a determin- I(t)

istic partg, the drift, and a stochastic pa(r, ¢t)&dt, where

& is a random vector anD is a weighting factor. Note that

in many applications [33g(r,¢) is modeled as a force field F(t)
due to a potential/(r,t), that isg(r,t) = —VV (r, ). W(t)

The stochastic part of the motion is determined by the
probability density functionf from which & is sampled, and
different types of motion can be generated by resorting ¢o th Alt)
class of the so called-stable distributions [34]. These form a
four-parameter family of continuous probability denstisay
f(& a, B,7,0). The parameters are the skewngs@neasure S(t)
of asymmetry), the scale (width of the distribution) and the
location § and, most important, the characteristic exponento(t)
«, or index of the distribution that specifies the asymptotic
behavior of the distribution. The relevance @fderives from M)
the fact that the probability density function (pdf) of jump L
lengths scales, asymptotically, &s'—<. Thus, relatively long r(t)
jumps are more likely whemy is small. By samplingé ~ rp(t)
f(&a,B,7,0), for a > 2 the usual random walk (Brownian
motion) occurs; iftx < 2 , the distribution of lengths is “broad”  s(r,?)
and the so called Levy flights take place.

In a seminal paper [35], Brockmann and Geisel arguedVpr
that a visual system producing Lévy flights implements a fp
more efficient strategy of shifting gaze in a random visual
environment than any strategy employing a typical scale inmp(r, 1)
gaze shift magnitudes. Further evidence of Lévy diffusive
behavior of scanpaths has been presented in [36]. PotentialVi.p
functions in a Langevin equation have been first used in [33],
to address scanpath generation in the frameworkfofaging Tip
metaphor.

Indeed, the heavy-tailed distributions of gaze shift ampli =(1: 1)
tudes are close to those characterizing the foraging behavi
of many animal species. Lévy flights have been used to modelX
optimal searches of foraging animals, namely their moment-#
to-moment relocations/flights used to sample the perceivedz(f)
habitat [20]. However, the general applicability of Levights 7k (%)
in ecology and biological sciences is still open to debate. | (1)
complex environments, optimal searches are likely to tesul vk (t)
from a mixed/composite strategy, in which Brownian and
Levy motions can be adopted depending on the structure”(t)
of the landscape in which the organism moves [21]. Lévy w(rc)
flights are best suited for the location of randomly, sparsel
distributed patches and Brownian motion gives the besttseesu
for the location of densely but random distributed withitgh Ny
resources [37].

A preliminary attempt towards a composite sampling strat- H(t)
egy for modelling gaze shift mechanisms has been presented
in [22]. However, that approach only conjectured a simple Q(t)
binary switch between a Gaussian and a Cauchy-like walk.A(t)
While providing some promising results, the approach ldcke C(t)
of a general framework and did not ground its assumptions onflx
empirical analysis of eye-tracked data. In the work presgnt
here, experimental data analysis has been exploited to subSk
stantially revise [22] and to formulate the general ES model
detailed in the following Section. Ny

Notations: The notations used in Section Il are listed in the

a snapshot of the raw time-varying natural
habitat at timet, i.e., a frame of the input
videoT,

the observable features of the habitat;

the set of random variables (RV) charac-
terizing the perceived time-varying natural
habitat;

the set of RVs characterizing an oculomo-
tor behavior, briefly, the action within the
habitat;

the set of RVs characterizing the salience
landscape of the habitat;

the set of RVs characterizing the patches of
the habitat;

the patch map

the spatial support of the video franig);

a point of coordinate$z, y) € L;

the gaze fixation position at timg i.e. the
Focus of Attention (FOA) center;

a binary r. v. labelling locatiomr € L as
salient or non salient;

total number of patches;

shape parameters of patphi.e., location
pp and covariancé,, ;

a binary RV labelling locationr € L as
belonging or not to patch;

total number of interest points generated
from patchp;

thei-th interest point generated from patch
p;

shorthand notation for the temporal se-
quencex(1),z(2),- - ,z(t);

the number of possible actions;

action index, in the rangfl,--- , K|;
categorical RV taking values ifi, - - - , K;
probability of choosing actio at timet;
the set of probabilitiegm (t)} 5, ;
hyper-parameter of the Dirichlet distribu-
tion overmy(t);

the set of hyperparametefs; (t)} % ;;

a cell or window, centered af_, i.e., the
elementary unit to partition the suppatt

in the configuration space;

the number of cells in the configuration
space;

the Boltzmann-Gibbs-Shannon entropy of
the configuration space;

the order parameter;

the disorder parameter;

the complexity index;

the set of parameters, B, vx, 0x Shaping
the a-stable distribution tied to actioh;
random vector of componengs ; sampled
from the k-th a-stable distribution;

the number of gaze attractors.
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I1l. THE ECOLOGICAL SAMPLING MODEL the visual attention realm, patches can stand for geipesto-

Let us assume that, at time the gaze position is set atPP€cts [9], [10], [38], [40], [41]. _
rr(t) (the center of the focus of attention, FOA). The ES Thus, atany given time, the observer perceives a eft)
strategy is part of the action/perception cycle undertaen Of @ number patches in terms of prey clusters, each patch
the observer and amounts to choose where to look next, PENg characterized by different shape and location. More
rp(t + 1), by sampling the appropriate motor behavior, diormally, O(t) = (O(t), ©(t)), whereO(t) = {0, (1)}, %, is
action A(t), conditioned on the perceived worl¥(t) and on the ensemble of patches aédt) their parametric description.

. Nip .
previous actiond(t — 1). At the most general level it can be N particular,0,(t) = {r; ,};_" is a sparse representation
articulated in the following steps: of patchp as the cluster of interest points (preys, food items)

that can be sampled from it. Patch sampling is driven by

1) Sampling the natural habitat: the locations and the shapes of the habitat patches describe

W*(t) ~ POV(t)|rp(t), F(t),I(t)); (2) through the set of paramete@t) = {®p(t)}1])v§1.
) ] ) More precisely, each patch is parametrized@gt) =
2) Sampling the appropriate motor behavior: (M,(t),0,). The setM,(t) = {m,(r,t)}rc, Stands for a
A)* ~ PAD)A(E — 1), WH(1)): (3 map of binary RVs indicating at timethe presence or ab;ence
of patchp. The overall map of patches within the habitat at
3) Sampling where to look next: time ¢ is given by M(¢) = U;V:Pl M, (t). This map may

. Ak be derived either by simple segmentation techniques of the
rp(t+1) ~ Plrp(t+ DAL WH(E),rr(t). (4) saliency map [38], [9], [41], or by exploiting higher levaies
Here, POW(t)|rr(t), F(t),1(t)) represents the world likeli- [6]-
hood as gauged through featuiiég) derived from the phys- ~ The patch map provides the necessary spatial support for a
ical stimulusI(t), which in turn is foveated at locatian-(t); 2D ellipse approximation of each patch, whose location and
P(A(t)W(t),rr(t)) is the probability of undertaking actionshape are parametrized @s= (x,, 2,) [10].
A(t) given the current state of affaireV(t), and previous  This way, the termP(O(t)|S(t)) can be factorized as

behavior A(t — 1). Finally, P(rp(t + 1) A®L), W(t),rr(t)) PO1),00), M@B)[SE) = PO@)[0F), M(t),S(t))
accounts for the gaze shift dynamics, that is the probguifit 2 (6(t)|M(t), S(t)) P(M(t)|S(t)).
the transitionr (t) — rp(t + 1). Eventually, by assuming independent patches, the first sam-
pling step (2) boils down to the following sub-steps:
A. Sampling the natural habitat S*(t) ~ P(S(H)FIA1)); ()
The "foraging” eye, by gazing atr(t), allows the observer M*(t) ~ P(M(1)|S* (1)); (6)
to gauge, at time, the physical world through featur@¥zt). ’
Differently from [22], the visible features serve the puspf forp=1,--- ,Np
structuring the habitatV(¢) in terms of alandscape S(¢) and 03(t) ~ P(0,(8)| M3 (1) = 1,8%(1)), @)

a set of landscappatches O(t), i.e. W(t) = {S(t), O(¢)}.
The landscape is defined as a map of spatially interest- O, (t) ~ P(Op(t)|0,(t), M (t) = 1,5%(t)). (8)
ing/uninteresting locationss(t) = {s(r,t)}reL. Following The first sub-step samples the foveated salience map. The
[331’ we uses(r,t) asa bi”afy random variable (RV) to Iabelsecond samples the patch map from the landscape. Thé third
pOSt; as Sa“eﬂ.t or non sallent._ h ._derives patch parametef$t), = (i, (t), Xp(2))).
P (VC (S{r 0 ;('; 1) ass?;nptlo(r;,) cz:ne be posf;ecrjor Eventually, sub-step (8) generates clusters of interestpo
torized F as’ 7((’) 1, S)ler (1), F(1), 1(1)) _ on the Iandsc_ape, one c!uster for each patch. By assum-
PO®)SE)P(SH)r t)’F(t) I}Et))’ ’ ing a Gaussian distribution centered on the patch, i.e.
o fo ’ ' P(ry|0,(t), My(1),S(t)) = N (rp; pp(t), Ep(t)), Eqg. (8) can
The probability P(S(t)|F(t),1(t),rr(t)) represents the be further specified as:
saliency map of such landscape, evaluated under the feature '
matrix F(¢), which is in turn obtained fronI(¢) gazed at Tip~N(rp;pp(t),Spt),i =1, , N p. 9)
rr(t) and thus foveated at that position. The foveated frarr:]_(:r}1

I is calculated by blurring the current frame using a Gaussi%g:zetgit:l?;e%f ;@” (;;\tErBSZEPp?Lhts(tc)f;%cictzgi;n?h:[lg(;ﬂa)ab|
function centered at(t). Eventually, the feature matrix is . o Pp=1lnnpR =l :
= provides a sparse representation of the original saliersy, m

obtainedF = F(I). ; —N. = N
Such definition of saliency as a posterior probability Ors]lnce|0(t)| = No = Nip x Np < |L].

locations is common to many methods in the literature (e.g., . . ]

see [38] for bottom-up saliency computation or [6], for % Sampling the appropriate motor behavior

general top-down, object-based method). It is worth noting We represent the process of selecting the most appropriate

that the model presented here needs not to rely on any specifistor behavior, which we briefly call aaction, as a two-

method for computing saliency. component process unfolding in time: the actual selectiah a
Patches may be conceived in terms of foraging sites arouhe evolution of parameters governing such selection. More

which food items (or moving preys) can be situated [39]. Iformally, an action is the paid(t) = (z(t), m), wherez(t)

— N~
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is a categorical RV with statesz(t) = {z(t) = k}X_,, each  In the case of a time-varying visual landscape, a crowded
state being one possible action. The probabilities of cingos scene with many people moving represents a disordered sys-
one of K behaviorsr(t) = {m;(t)}/<, are the parameterstem (high entropy, low order) as opposed to a static scene
governing the multinomial choice of(t). where no events take place (low entropy, high order). The
By letting the action choiceA(t) depend only on the highest complexity is reached when specific events occur: tw
sampled interest points, then, we can factof4ed(¢)|A(t — persons meeting at a cross-road while a cyclist is passing by
1),0(t)) = P(z(t),n(t)z(t — 1),7(t — 1),0(t)) = etc. What is observed in eye-tracking experiments on videos
P(z(t)|m(t))P(m(t)|m(t — 1), 0(t)). [1] is that low complexity scenarios usually lead to longer
Since in our case, differently from [22], the motor behavidilights (saccadic behavior) so as to promptly gather more
is chosen among possible kindsP(z|r) is the Multinomial information, whilst at the edge of order/disorder more ctemp
distribution Mult(z(t)|x(t)) = [T, [me (0] with m, = and mixed behaviors take place (e.g., intertwining fixatjon
P(z = k|r). smooth-pursuit, and saccades). To formalize the reldtipns
The conjugate prior of the Iatterzi:s the Dirichlet distritaut, between the complexity of the habitat and the choice of
— ) _ PQw® w(t)—1  behavior we proceed as follows.

() _,DZT(W(t)’V(m I 20N [T me(®) ’ We compute the BGS entropyf as a function of the
wherel'(-) is the Gamma function., _ spatial configuration of the sampled interest points. The
Note that the transitiod(¢ — 1) — A(t), is governed by spatial domainL is partitioned into a configuration space

the posterior tran_smon_denS|t_13?(7r(t)|7r_(t - 1),Q(t)). Smce_ of cells (rectangular windows), i-e{,w(rc)}ivg“l, each cell
here we are dealing with a kind of (discrete time) dynamicghing centered at.. By assigning each interest point to the
sysFem, this represents the transition over a time slics, u_;h corresponding window, the probability for pointto be within
an instance of the process that actually has been runningdd . at time+ can be estimated aB(c,t) ~ NL Zivil Xo.c

to time¢. _ _wherex;,. = 1if ry € w(r.) and0 otherwise (see, Section
Under first-order Markov assumption [42], the posteriof; tor further details).

pdf can be fully written asP(x(¢)|7(t — 1),0(} : 1)) x Thus, H(t) = —kg Zi\f:wlp(q t)log P(c,t), and (11) can

P(O()|n(1))P(r(t-1)|O(1 : t—1)). Such recursive updating pe easily computed. Since we are dealing with a fictitious

can be analytically specified, in the case of the Diricm‘fﬁermodynamical system, we set Boltzmann's constant=

distribution, by the hyper-parameter update 1. The supremum of{ (t) is obviously H,,, = In N,, and it

i (t) = v (0) + Ni(b), (10) s associated to a completely unconstrained process, szt i
_ _ ~ process wherd{ (t) = const, since with reflecting boundary
where, in Iverson’s notationNy(t) = N(t)[E=k] is conditions the asymptotic distribution is uniform.

a count on events depending on the sparse representasiven C(t), we partition the complexity range in order to
tion O(t). To make this statement explicit, we will writegefine K possible complexity event§Ee() = k}K ;. This

P(r(t)|v(t),O(t)) = P(x(t)|[v(O(t))) to remark the depen- yay the hyper-parameter update (10) can be rewritten as the
dance of the hyperparameters Ot). recursion

Instead of using the configuration 6(¢) as the explanatory
variable influencing the motor behavior choice, we will use a  vi(t) = vp(t — 1)+ [Eey = k| ,k=1,--- | K. (12)
dependent variable, a global parameter,6@y(t)), providing i i ) i
at a glance the "gist” of the spatio-temporal configuration As previously discussed, three possible events will be even

of the landscape. One such outcome variable is the spafigd!ly identified (see Section IV) to provide the gist of the

temporal heterogeneity of the landscape. spatio-temporal habitat: "ordered dynamics”, "edge dyitain

For instance, in ecological modelling [43] a widely adopte@nd "disordered dynamics”, each biasing the process toward
measure to gauge the heterogeneity is the landscape entrd ecific gaze shift behavior as observed in eye-tracked dat
determined by dispersion/concentration of food items eygr

Here, generalizing this approach, we u&(t)) (or more Summipg up, the actiqn sampling step (3) amounts .to:
simply C(t)) to capture the time-varying configurational com) computing the complexity of the landscape as a function

plexity of interest points within the landscape. of sampled interest pointS(¢); ii) updating accordingly the
Following Shiner et al. [44], the complexityC(¢) can be hyperparametens;(O(t)) (12); iii) sampling the actiond*(¢)
defined in terms of order/disorder of the system: as.
7 (t) ~ Dir(x|v(O(t))); (13)
C(t) = A(¢) - Q1), (11)

where A = H/H,,, is the disorder paramete®) = 1 — A 2 () ~ Mult(2(t)|7" (2))- (14)

is the order parameter, arfd the Boltzmann-Gibbs-Shannon
(BGS) entropy of the system witH,, its supremum.
Eg. (11) embodies the general principle underlying aff. Sampling where to look next
approaches undertaken to define the complexity of a dynamiggjyen actionA*(t), we can rewrite the last sampling step
system: complex systems are neither completely random qﬁi-(4) as:
ther perfectly ordered and complexity should reach its maxi
mum at a level of of randomness away from these extremesrp(t + 1) ~ P(rp(t + 1)|2"(t) = k,0°(t),n,rr(t)). (15)
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008 Gaze length distribution: comp. #1 o CCDFfroni humai'i data = pOtentials,
|
= | Ny
v
2 i — rp,t) = — re(t) —r,(t)). 17
B oo | VV(rp,t) ==Y (rr(t) — (1)) 17)
| j=sstimated) . | p=1
40 0 1 2 )
Gaze length x (pixels) " Gazelength x(oixels) The selection of attractors,(t) clearly depends on the
g, TERmhGSMGOLcRe 2,  CLOEhmieons. action statek. If a fixation / pursuit behavior has been sampled,
| | these will be chosen as thé,, most valuable points sampled
g o . from the current patch, that 8, < N, ,. Otherwise, the
0.005 4 ‘ i & |0 empirical attractors can be straightforwardly identified with patehters
op=TIR IR . 10’12&_“““’99 =, m(t), ie, Ny = Np. The latter are to be considered the
Gaze length x (pixels) Gaze length x (pixels) possible targets for medium or large shifts of gaze (sa®ade
Gaze length distribution: comp. #3 . CCDF from human data FO”OWing [32], the Component&,j, ] — 1’ 2 are Sampled

0.01 10
‘ from an a-stable distributionf(&;n,) and they are assumed

;510 ‘ to be statistically independent, so tHatrx, t) is a diagonal
= |0 empircal matrix. The elements oD(rp,t) can be determined on the
% ool =seimated], .+ basis of theoretical consideration or by the experimerdsé d

10 200 300 400 10 10+ prc
Gaze longth x (piels) Gaze length x (pixels) [32]. Here we have chosen to set the elementDogqual

Fa 1 Results of thev-stable fit of th " « and g to the width-y, of the a-stable distribution characterizing the
ig. 1. esults of then-stable fit of the smooth pursuit and saccadic - . .
components for thentvclip04. The left column figures show the empirical rando_m Walk at t'met’ namelyD(rr,t) = I with T the
distribution with superimposed the fitted-stable distributions; the right 2 X 2 identity matrix.

column ﬁgurets StEOV‘]{_ttthe dOUb'ﬁ 'Ofg'Pt'gf of the tchorrequpm@li. ;he tgp By using these assumptions and by resorting to the Euler-
row represents the fitting results for the smooth pursuit mament & = 2, . o . -

B =1~ =620,06 = 12.88; K-S statistics0.1200, p = 0.4431). The Maruyama discretization_ [46], for a small time step =
middle row presents the results obtained fordhstable fit of the first saccadic tn+1 — tn, the SDE (16) is integrated as:

componentd = 2, 8 =1, v = 26.10, 6 = 101.13; K-S statistics0.1398,

p = 0.301). The bottom row presents the results obtained for the secon Nv.

saccadic componen(= 1.72, 8 = 1, v = 41.25, § = 251.25; K-S rp(tn1) R rp(ty) — Z(rp(tn) —rp(tn))T
statistics0.1786, p = 0.7198s). =1

+ylrt/onge.  (18)

Heren play the role of the actual "motor” parameters govern- This step provides the explicit procedure for sampling the
ing the shift of gaze. next gaze shift.

Clearly, the choice among the different oculomotor
behaviors follows a Multinomial distribution,P(rz(t + IV. SIMULATION
Dz(t),0(t),n,xr(t)) = [l [Pr(t+ 1)|rF(t),77)]Z(t> Simulations have been carried out to generate statistics of
where P(rp(t + 1)|2(t) = k,0%(t),n,rp(t)) = P(rp(t + 9aze shift behavior of the model. The latter have been com-
1)|6*(t), me,rr(t)) is the oculomotor state transition probapared with those exhibited by human observers (subsection
bility of the shift rn(t) — rp(t + 1), which is generated IV-E).
according to motor behaviar*(t) = k and thus regulated by ~ The rationale is that if observed gaze shifts are generated
parametersy. by an underlying stochastic process the distribution fionst

We samplerp(t + 1) by making explicit the stochastic and the temporal dynamics of eye movements should be

dynamics behind the process [45]. To this end, Eq. (1) t-r‘é)mple_tely specified by the .stochastic process [47]. At the
reformulated as a two-dimensional dynamical system in whi@Me time, different stochastic processes often yielemifft

the drift term depends on a potentidland the stochastic part Marginal distribution functions in the outcome variablesis,
is driven by one-of& possible types ofi-stable motion knowing the precise distribution functions of a RV should-su
gest plausible generative mechanisms and rule out implebab

ones.
Following previous work in the literature [35], the ex-
periments were specifically designed to confront gaze shift
The drift term, the first term on the r.h.s. of (16), is modeded magnitude distribution of subjects scanning videos (ctdie
follows. In a foraging framework, animals are expected to hg a publicly available dataset, subsection IV-A), with sko
attracted or repelled from certain sites; therefoif@, t) can  obtained by running an implementation of the ES model
be assumed to depend on the distance between the posititailed in subsection IV-C). Indeed, the study of shift-am
rr of the animal and the position” of the nearest of such piitude distribution, and in particular of the correspargli
sites. For simplicity, we defin& (rr,¢) = 3|rr(t) —r*(t)]>. complementary cumulative distribution function (CCDFS, i
Then, we seleciVy sites (according to some rule, e.g, théhe standard convention in the literature of different field
top-Ny most attractive). By assuming that suatfractors act dealing with anomalous random walks such as foraging [21],
as independent sources, the gradient of the potential canhibenan mobility [48], statistical physics [49]. In this resp,
eventually obtained from the linear combination§f; local a preliminary, non trivial problem to solve is to derive from

drp(t) = =VV(rp,t)dt + D(rp,t)€x(t)dt.  (16)
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observer on the same video has the same statistical "mobilit
tendency” in terms of gaze shifts; then this aggregation is
reasonable because every trace obtained from the sameisideo
subject to the same or similar saliency constraints (i.suali
landscape). The same technique is used in other studies of
Levy walks (e.g., [48]) but also in eye-tracking experingent
[2]. In the CRCNS database, eye-tracker samples are individ
ally labelled as fixation, saccade or smooth pursuit, froricivh
it is possible to collect empirical gaze magnitude distidms
of eye-tracked subjects. Saccade lengths are straiglafdrio
compute as the Euclidean distance between saccade slart/en
coordinates. For what concerns smooth pursuit, which ihdee
represents a kind of Continuous Time Random Walk, since
movies were displayed in the original experiment at a rate of
33.185 ms/frame, to be consistent, we subsampledi®ach
smooth pursuit sub-tracks in order to work at a frame-rate
basis, thus making feasible to compare with the simulation.
The same was done for fixational movements, which have been
aggregated with pursuit samples.

Given the empirical distributions of smooth pursuit and
saccades, it is possible to individually fit such distribng
in order to derive the parameters of the underlying alpha-
stable distribution. The quality of the fit is assessed via th
two-sample Kolmogorov-Smirnov (K-S) test, which is very

Fig. 2. The Ecological Sampling implementation at a glarf@®m top to  gensitive in detecting even a minuscule difference between
bottom, left to right: the original frame; the foveated freynthe raw saliency

map; detected patches; sampled interest points (drawn #s wisks for two pgpulations OT data. For a more preCise descrip_t?on of
visualization purpose); the sampled FOA the tail behavior, i.e. the laws governing the probabilify o

large shifts, the upper tail of the distribution of the gahdts

magnitudeX has also been considered. This can be defined
recorded eye-tracked data the numiérof motor behaviors asF(z) = P(X > ) = 1 — F(z), whereF is the cumulative
and to infer the relatedw-stable distribution parameters; togistribution function (CDF). Consideration of the uppi, tar
such end a fitting procedure has been devised, which démplementary CDF (CCDF) of jump lengths is the standard

presented in subsection IV-B. convention in the literature.
Fig. 1 shows one example of the typical behavior of pursuit
A. Dataset and saccade gaze shifts in terms of both the shift magnitude

We used the CRCNS eye-1 dataset created by Universitydtwribu'[ion and its corresponding upper tail behavior.

South California. The dataset is freely available and &igsi We experimentally found that any attempt to fit a unigue

of a body of 520 human eye-tracking data traces recordedjable function to the empirical distribution of saccadsisfto
(240 Hz sampling rate) while normal, young adult humaRass the K-S test. This coul_d be expecte_d by visual inspl_actio
volunteers watched complex video stimuli (TV programé),f the saccade_amphtud(_e histogram, which suggest a mixture
outdoors videos, video games), under the generic task 6f ”f8f two saccadic behawor_s. In order to_ separate_ the two
lowing main actors and actions”. It comprises eye movemeﬁﬁl’tocesseS S0 to use them in the gaze shift gelneratlve Process
recordings from eight distinct subjects watchis@ different 18), one could resort to an-stable m_lxture fitting method.
video clips (MPEG-1640 x 480 pixels, 30 fps, approximately Unfortunately, most of they-s?able mixture treatments that

25 minutes of total playtime; the Original dataset), and frorﬂave been developed are either tailored for specific cases

another eight subjects watching the same set of video cligf'sg" s(;j/m:cnetric ldistrib;:tions,MNormacI:-C?uchy OlliSFribDS’Sl
after scrambling them into randomly re-ordered set$ of3s ic) and often rely on heavy Monte Carlo simulations [51].

clippets (the MTV-style dataset). See [50] for a descr'rptioThu,S’ we opted for an indirect but effecti\_/e technique._
First, we hard-clustered the gaze shift samples into an

d https:// .org/files/data/eye-1/ -eyel df
an PS.ICTENS. orgrifies/data/eye- Licrens-eye asamp optimal number ofx-stable mixture components via a Varia-

for more details. tional Bayes StudentMixture Model (VBSTMM, see [52] for
) o detailed presentation). The reason for using tthkstribution
B. Gaze shifts statistics for identifying components stems from the fact that this
We studied the distributions of gaze magnitudes by analydistribution might be regarded as the strongest competitor
ing eye-tracking results collected in the CRCNS database ffo the a-stable distribution. While thew-stable distribution
this end, gaze shift samples from all the traces of the saingplies extremely slowly decreasing tails, thedistribution
video, regardless of the observers, are aggregated tagettle exhibits power tails but has the advantage of finite moments.
used in the same distribution. The assumption is that evdry a second step, each mixture component was separately
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used fora-stable parameter estimation. The estimation of the o Compieéity -
a-stable distribution is complicated by the aforementioned © » 2 o 2 o
D‘h (J'lh _ :C.'n C."n Ch w

i

nonexistence of a closed form pdf. Here we have used the 2,
approximated parameter estimator proposed in [53]. ==

MY

1:'7.__

As a result, what can be observed is that the componen
accounting for smooth pursuit and fixations (comp) #s 3 :" N *
readily separated from those explaining saccades; in sat, < “qxl
cade distribution optimally splits in twa-stable components, . Tt
a first one, in most cases Gaussian-likex~ 2 (comp. #2) BLE e E |

. o| = = e o .
related to saccades of medium length, and a second one (com et =
#3) related to saccades of higher magnitude. An example . "i :
of such pattern is shown in Fig. 1. Interestingly enough, == . B¢ 1 il
such multi-component statistics for saccades providethera =il _} .
different result from those usually reported in the litarat . Erjl .
when considering static images [35], [33] or conjectured fo 8 c ".'_'.
video analysis [22]. v i

C. Implementation details

In order to implement the first sampling step specified in
(5), the saliency maP(S(t)|F(t),1(t),rr(¢)) is derived as
follows. Given a fixation pointrx(¢) at time ¢ (the frame
center is chosen fot = 1), we simulate the foveation
process by blurring the current RGB frarhg) of the input
sequence through a Gaussian function centerag-@f). The
foveated frame is obtained d¢r,t) = I(r,t) exp{—(r(¢t) —
I‘F(t))E;lOA(I‘(t) — I‘F(t))T}, where Yroa = 02]1, o =
|[FOA|. Here |[FOA| indicates approximately the radius of
a FOA, wherd FOA| =~ 1/8 min[width, height] of the frame
spatial support.. R

The foveated framel(-,¢), is used to compute feature
matrix F(¢) and saliencyP(S(¢)|F(I(¢))) through the Self-
resemblance method described in [38]. We initially experi-
mented with the lttiet al. [5], the Bayesian Surprise [54] and
the Graph-Based Visual Saliency [55] methods. Howevef; Sel
resemblance provides comparable performance and meanwhi
it can handle both static and space-time saliency detedtion

avoids explicit motion estimation and meanwhile is able g9 3- An example of typical results obtained along the dation. In the
center of the figure the plot shows the evolution of order {ddsline) and

cope with camera motion. disorder parameter§ and A as a function of frame number. From top to

Next we approximate the sampling steps (6) and (7) tottom, the first dashed box represent a time window whkre- Q and

i an excerpt of the resulting saccadic exploratory behawsoshown in the
Ob_tl_alj:nM(t) an%.ep(t) as follows. . . v d f FOA sequence sampling the basket ball actions (top rigmédraequence);
e proto-object map/\/l(t) IS SImply drawn 1roM  ihe second time window reports a switch to a smooth-pursgiinte due to

o~

P(S(t)|F(I(t))) by deriving a preliminary binary map Q > A with corresponding foveations on the most important objedhe
ﬂ(t) _ ’ﬁ’L(I‘ t)}reL such that ﬁz(r t) — 1 if scene (player close-up) shown in the left frame sequencesiibcessive time
) 1 )

1aquinu swel
ace

00€
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0se
I

snnnnn?

00v
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18pIO - - -

.-lII'.IIIIII"I'IIII'Ily
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=~ Y . window witnesses a new behavioral switeh ¢ 2 ) to a prevalent saccadic
P(s(r,t)|F(I(t))) > Tm, andin(r,t) = 0 otherwise. The expiorations of the sport game dynamics (bottom right secele
thresholdT’,, is an adaptive threshold similar to the methods
proposed in [41] and [38], which is determined as three times
the mean saliency [S(t)] of the frame [41]. The technique of The sampling of patch parametefs(t) is approximated
settingTs so as to achiev@5% significance level in deciding as follows. By assuming a uniform prioP(6,(¢)), then
whether the given saliency values are in the extreme tailseof P(6,,(¢)|M,(t),S(t)) x P(M,(t), S(t)|0,(t)), so thatd,(t)
pdf provides comparable results [38]. Indeed, both progesiureduce to parameters (rather than RVs) that can be estimated
are based on the assumption that a salient proto-object isi@a any maximum-likelihood technique. In the simulatiorsth
relatively rare region and thus result in values which are imas obtained by adopting the technique by Halir and Flusser
the tails of P(S(¢)|F(I(2))). [56], because of its numerical stability and computational
Following [9], M(t) = {Mp(t)}év;’l is obtained as efficiency (due to non-iterativity). Once parametés§) have
Mp(t) = {my(r,t)|¢(B,r,t) = p}rer, Where the function been computed, each patch is used to generate interess point
¢ labels M (t) aroundr using the classic Rosenfeld and Pfaltin a number proportional to the area of the ellipse desagibin
algorithm (implemented in the Matldiwlabel function). We the patch. We selv; = 50 the maximum number of interest

set Np = 8 to retain the most important patches. points and for each patch, and we sample{ri,p}f\ﬁf from
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CCDF: comp. #1. Subj: CZ

3

a Gaussian centered on the patch as in (9). The number "¢

interest points per patch is estimateds, = [V, x ZA—Z‘]’
P P

A, = 1o, poy p being the area of patch

At this point we compute the order/disorder parameters. W
use N,, = 16 rectangular windows (approximately covering ;‘°“‘-'

N
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half of the area covered by a FOA), their size depending 0z, %

the frame sizeL|. This choice also provides the best trade-off¢
between coarse to fine properties of the configuration spac “«
and the numberV, of sampled interest points. The spatial .. *

empirical
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10!
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o

histogram of interest points is used to estimate empisicall 7 %

the cell probability; the latter is then used to calculate th
BGS entropyH (t) of the interest point configuration space,
and eventually the disorder and order parametarg) and

Q(t) to be used in Eqg. ( 11) [44].

Note thatmaxC(t) is achieved forA(t) = Q(t)
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Subject Comp. i o Bi i o;
Cz i=1 2 1 4.06 7.15
i=2 2 1 22.44 | 60.82
i=3 1.9854 1 63.99 | 230.31
JA i=1 2 1 4.50 9.11
i=2 1 1 23.37 | 63.89
i=3 1.57 1 30.90 | 220.07
Jz i=1 199 | 0.08 | 4.34 9.70
i=2 2 -1 2297 | 68.28
i=3 1.98 1 40.07 | 187.77
RC i=1 2 1 4.91 8.9
i=2 2 1 24.88 | 62.69
i=3 1.59 1 53.80 | 249.78
VN i=1 191 1 3.35 6.58
i=2 2 1 22.25 | 62.43
i=3 1.52 1 38.85 | 214.20
All i=1 2 1 4.42 8.11
subjects i=2 2 1 23.42 | 63.84
i=3 1.6 1 45.61 | 230.41
Ecological i=1 2 1 3.78 9.78
Sampling i=2 2 1 21.70 | 62.74
i=3 1.76 1 59.79 | 245.20
TABLE I

Subject Comp.i| «a; Bi Yi 0;
Ccz i=1 2 1 4.27 7.52
i=2 2 1 22.44 | 60.82
i=3 198 | 1 | 63.99 | 230.31
Jz i=1 2 -1 | 3.60 12.40
i=2 199 | 1 | 2046 | 64.90
i=3 1.75| 1 30.63 | 197.20
NM i=1 2 1 4.76 7.81
i=2 198 | 1 | 21.32| 488
i=3 123 | 1 | 32.64 | 292.68
RC i=1 155| 1 2.68 6.92
i=2 2 1 22.47 | 62.57
i=3 143 | 1 33.50 | 214.15
VN i=1 2 1 4.48 7.50
i=2 2 1 24.15 | 59.05
i=3 1.78 | 1 29.90 | 197.71
All i=1 2 1 4.47 7.54
subjects i=2 2 1 | 22.87 55.6
i=3 151 | 1 36.69 | 231.06
Ecological i=1 2 1 3.80 10.57
Sampling i=2 2 1 | 22.14 | 58.061
i=3 163 | 1 | 64.18| 273.86
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Fig. 4. Analysis of gaze shift dynamics from thesportsO3 video. From
left to right, the first column shows the double log plot of tBEDF derived
from the smooth-pursuit component; the center and rightiroal the plots
related to the two saccadic components. From top to bottbm fitst five
rows show the CCDFs related to subjects CZ , JA, JZ, RC, VN;sikth
row presents the CCDFs obtained from the gaze magnitudebdison of all
subjects. The bottom row presents the CCDF obtained fromroneof the
proposed algorithm.

thusmax C(¢) = 0.25. By taking into account the results ob-
tained from eye-tracking data analysis, three complexignés

E¢ € {1,2,3} are devised, which characterize corresponding
motor behaviorsk € {1,2,3}: Ec = 1 if Q(t) > A(t)

and C < maxC — € indicating an "ordered dynamics” of
the spatio-temporal habitaty: = 3 if Q(¢t) < A(¢) and

C < maxC — ¢ for "disordered dynamics”; evenke = 2
occurs within higher range of complexityf — maxC| < €
where "edge dynamics” will take place. In the simulation the
range valuee = 0.01 has been experimentally determined.
The empirical consequence of such event detection proeedur
is that an ordered dynamics of the habitat will most likely
bias the shift dynamics toward quasi-Brownian shifts (fomt

/ pursuit regime), whilst in highly disordered environment
longer shifts are more likely to occur (saccadic regimejhat
edge between these regimes, where complexity is high since
order is dynamically competing with disordé(t) ~ A(t),
intermediate length shifts and mixed behaviors will takacpl
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Fig. 5.

proposed algorithm.
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(see again Figure 3.
Having detected the spatio-temporal "gist” of the habita, WTA computation, and.001 spf for the subsequent inhibition
hyperparameters of the Dirichlet distribution can be uedatof return on the attended location. Elapsed times have been

via (10). This is sufficient to set the bias of the "behavioralbtained using the latest version of the saliency tool bangus
choice” (13) and the choice = k is made (14).
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Analysis of gaze shift dynamics from theonicaO3 video. From
left to right, the first column shows the double log plot of tBEDF derived
from the smooth-pursuit component; the center and rightiroal the plots
related to the two saccadic components. From top to bottbm fitst five
rows show the CCDFs related to subjects CZ ,JZ, NM, RC, VN; dix¢h
row presents the CCDFs obtained from the gaze magnitudebdison of all
subjects. The bottom row presents the CCDF obtained fromroneof the

parametens
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mined via (18). First, the drift components[0,.V, 8yV]T are
computed via (17); then, given the parametggs the shift
lenght components are sampléd; ~ f(&k.i;7%). The a-
stable random vectaf, was sampled using the well known
Chambers, Mallows, and Stuck procedure [57].

For what concerns the time sampling parameter ¢,, 1 —
tn,n=0,---, N, in order to work at the frame rate 86 fps,
by assuming the time intervdl = 1 sec andV = 30, the time
discretization parameter is set as= T/N = 0.03. [46]. An
illustrative example, which is representative of resuttsiaved
on such data-set, is provided in Fig. 3, where the change of
motor behavior regime is readily apparent as a function ef th
complexity of scene dynamics.

D. Computational cost

The system is currently implemented in plain MATLAB
code, with no specific optimizations and running on a 2.8
GHz Intel Core 2 Duo processor, 4 GB RAM, under Mac OS
X 10.5.8.. As regards actual performance under such setting,
the average average elapsed time for the whole processing
amounts t@®.175 spf (seconds per frame, frame sizH) x 480
pixels). More precisely, once computed the foveated frame,
which takes an average elapsed timé) 0f14 spf, most of the
execution time is spent to compute featured,55 spf, and
salience,0.846 spf. The average elapsed time for obtaining
patches i9.106 spf, 0.021 spf is spent for sampling interest
points, 0.001 spf is used to evaluate the complexity, and
eventually0.002 spf is used for sampling the new point of
gaze. Summing up, the actual average time concerning the
method proposed here, independently of feature and sglienc
computation (which may vary according to the technique
adopted and related software and hardware optimizations),
amounts t00.130 spf. Clearly, the speed-up in this phase is
due to the fact that once the set of salient interest poings ha
been sampled, then subsequent computations only deal with
N, points in the worst case, a rather sparse representation
of the original frame. For comparison purposes, the baselin
algorithm [5], which is representative of the class of metho
using the argmax operation [9] for determining the gaze
shift, takes an average elapsed time 10658 spf for the

the default parameters [9].
More generally, decision rules that boil down to g max

{aw, Br, vk, 0k } corresponding to thé( behaviors have beenoperation havé (N) complexity, whereN is the size of the
derived from the clips of the MTV-style dataset; the ratienainput. The original WTA procedure itself i® (N2), but with
behind this choice stems from the fact that since the lateer &pecific optimization it can be reduced @(N) complexity
assembled by mixing different clips of the 'Original’ dagas [9]. In ES the decision where to look next can be evaluated
parameters inferred on such clips are suitable to providet@O (N;), yet Ny < |L|. Eventually, to compare with proto-
sort of average motor behavior suitable for different typés object based methods that rely on the selection of the proto-

videos.

For the examples shown heng = {a; = 2,61 = 1,11 =

6.20,51 = O}, N2 = {042 = 2,52 = 1,’}/2 = 2610,52
O}, N3 = {Oég = 172,63 = 1,’}/3 = 4125,53 = O}, where Ny < Np.

we have seb, = 0, since in the sampling phase the drift is
accounted for by the deterministic component of Eq. (18).

object with the highest attentional weigld (IV), with N the
number of proto-objects, e.g., [10]), the step specifiedHay t
shift equation (18) should be considered, whichOgNy),

1In the spirit of reproducible research, the MATLAB implentation code
of the ES model will be made available at http://boccigndinenimi.it/

Eventually, the new FOAr;,, is straightforwardly deter- Ecological Sampling.html
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E. Validation that empirical data are actually truncated (with resped¢h&®

| der t . hether th d model iEnage/fieId of view).
¢ ?ct).r erto Ve”fde\t’ eth er ebpropodS(_e mo te C&kmdg(;nslra eFinaIIy, we compare the overall distributions of gaze shift
statistics compared 1o those observed in eye-tracke B_Jeamplitudes from humans, the ES model and the baseline
we run the procedure as described above on different videos

SRR arg max operation [9] (Fig. 6).
of the CRCNS "Original’ dataset To this aim we extend to videos the procedure proposed

The recorded FOA coordinates have been used to comp%p-rauer et al. [2]. Note that in [2] human saccadic be-
the gaze magnitude distributions. Differently from thegmaf 5vior on static images was compared against the WTA

eter estimation stage, here we assume unlabelled distmisut ,ethod, whereas here human amplitude distributions are de-
both for the ones obtained from ecological sampling andehog,eq from eye-tracking data of all subjects viewing each

composing the data-set. video. Separate simulations are run for the corresponding
Then, for each video we cluster (label) each distributiof,mper of virtual observers viewing the same videos. The

in three gaze components (smooth-pursuit and fixation +s@me time-varying saliency map is used for both ES and

saccade components) by means of VBMTS. Eventually )¢, 1ax methods. The empirical probability densitié¥()

two samples Kolmogorov-Smirnov test is computed betwe@Rown in Fig. 6 have been calculated from the normalized

each corresponding component obtained from algorithm g&fistograms of actual and simulated data. It can be seen that

erated and eye-tracked scanpaths considering both individgs generated distributions are close to the ones exhibited

observers and the ensemble of all observers. An examg@ humans, whilst the distributions from thegmax sim-

of results obtained on thetvsports03” clip, which are yjations fail to capture the overall heavy-tailed shapes of

representative of the overall results obtained on the CNR@t,al data. For thévsports03 video (top plots) the mean,

datase is shown in Fig. 4. It can be seen that ES generafgddian and mode values for human and simulated data
scanpaths show strikingly similar gaze magnitude ste$istiyyq- meangum = 79.73, medgum = 53.15, modegum =
described in terms of the complementary CDFs plotted &3 1yeanps = 65.01, medgs = 47.79, modeps = 2.1;
double log-scale. Table | shows the fitteestable component .00, = 32.36, medprax = 13.89, moderax =
parameters for each subject participating to the expeimes For the monica03 video (bottom plots) we obtained:
the ensemble of subjects, and a scanpath generated by the,£5,, ;. = = 97.28 medgum = 66.94, modegrum = 1.41:
procedure. On this clip the KS test confronting the alganith meangs = 107.14,medps = 87.36,modeps = 1.06;

generated and eye-tracked scanpaths fails for compdneht meanarax = 36.4, medarax = 19.02, modeyax = 15.
subject RC (KS Statistics8.25836; pValue=7.4646 x 10~?) In particular, it can be noticed in both examples that,
and component of subject VN (KS Statistics=0.25032;  gpart from the shorter tails, major deviationsaof max with
pValue=L.8712 x 10~?). Actually, such results are recoveredespect to humans (and ES) occur within the mid-range of
when gaze shift samples from all the scanpaths, regardtesggplitudes, which is related to complex behavior. Clednhy,
the observers, are aggregated together and used in the sapa@itly different trends between all distributions ohast in
distribution (row 6). tvsports03 and those derived frormonica03 are due to the
A second example is provided in Fig. 5 showing resuligifferent video content.
obtained on the complermonica03 video. Table Il reports  Actually, an even more striking difference was reported in
the fitted a-stable parameters. In this second example thg] between human data and the WTA simulated data. How-
Kolmogorov-Smirnov test is not satisfied in some individuadver, we must keep in mind that in [2] only static images and
cases when the gaze component CDFs of the simulated scamplitude distributions of saccades were considered.elde
path is compared to componehbf subjects NM (KS Statis- pictures, as opposed to natural videos, lack spatio-teahpor
tics= 0.55742; pValue=3.3615 x 10~'?), RC (KS Statistics= information and thus fall short of ecological plausibilig].
0.49375; pValue=2.8111 x 10~'%) and component 2 of subjectDynamic information mitigates the limitations of using low
VN (KS Statistics=0.36991; pValue=1.2179x10~*). However |evel saliency as the input representation since, so fagllo
this is more likely to happen due to the sparsity of sampl@sotion features and objects/actions are often correladgd |
in such cases. Again, results are recovered by considérég This consequence is captured in Fig. 6 for small amplitude
gaze shift distribution of the observer ensemble. shifts, where thewrg max model exhibits a trend that is near
It is worth noting the general trend of a nearly Gaussiao that of humans and ES.
behavior & ~ 2) of smooth pursuit / fixation(with a clear
exception of subject VN) and of the first saccadic components V. DISCUSSION AND CONCLUSION
whilst the third component reveals a superdiffusive betravi In this work we have modeled a gaze shift model that
(@ < 2). In the latter case the CCDF deviation betweesllows to mimic the variability of scanpaths exhibited by
the empirical data and the estimated distribution that can human observers. The simulated behaviors are characterize
observed in the tail of the plot can be associated to the fagf statistical properties that are close to those of subjeye-
tracked while watching complex videos. To the best of our
2This paper has supplementary downloadable material dlailat http:// knowledge, the ES model is novel in addressing the intrinsic

ieeexplore.ieee.org, provided by the authors. This iregdugvo videos showing stochasticity of gaze shifts and meanwhile it generalim p
the foveation sequences obtained on the afiiemica03 andtvsportsO3 from

of the CRCNS 'Original’ dataset angadme file. This material is2.24 MB \[/i%l]Js[gg]proaches proposed in the literature, [22], [333],[3
in size. 58]- .
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CHuman ‘ although statistics obtained by varying such parametestﬂre
ArgMax simulated far from those of human data. Closer to our study is the model
by Keech and Resca [63] that mimics phenomenologically the
observed eye movement trajectories and where randomness is
captured through a Monte Carlo selection of a particular eye
movement based on its probability; probabilistic modelaig
eye movement data has been also discussed in [64]. However,
both models address the specific task of conjunctive visual

search and are limited to static scenes. Other excepti@ns ar

Tos

.........
"
.
.............

0 00 o0 400 450 500 given, but in the very peculiar field of eye-movements in
. , ‘ reading [47].
09 e ated The majority of models in computational vision basically

ArgMax simulated

resort to deterministic mechanisms to realize gaze skiftd,
this has been the main route to model saccades the most
random type of gaze shift [2]. Hence, if the same saliency
map is provided as input, they will basically generate the
same scanpath; further, disregard of motor strategies and
tendencies that characterise gaze shift programmingtseisul
distributions of gaze shift amplitudes different from thdbat
0 LT | can be derived from eye-tracking experiments.
0 50 100 150 200 250 300 350 400 450 500 . . .
I (pixels) We have presented in Section IV examples showing that the
, o , , overall distributions of human and ES generated shifts en th
Fig. 6. Overall distributions of gaze shift amplitudefom humans, the ES . . . .. .
model, and thearg max method. Topivsports03. Bottommonica03 . same video are close in their statistics, see Flg. 6.
When anarg max operation (e.g., the WTA scheme or the
MAP decision rule in a probabilistic setting), the statistof
The core of such strategy relies upon using a mixturae-of model generated scanpaths do not match those of the eye-
stable motions modulated by the complexity of the scene. Ttracked subjects and the characteristic heavy-tailedialigion
strategy exploits long-tailed distributions of gaze shefigths of amplitudes are not recovered. This result is in agreement
for the analysis of dynamic scenes, which have been usuallyd extends that reported in [2].
considered limiting to static images. On the other hand, models proposed in the literature that
The composition of random walks in terms of a mixturenainly focus on representational issues can be complemyenta
of a-stable components allows to treat different types of eyé&sthe one proposed here. Nothing prevents from using the ES
movement (smooth pursuit, saccades, fixational movemerggke shift mechanism in the framework of a general top-down,
within the same framework and makes a step towards thbject-based attention system by adopting a computation of
unified modelling of different kinds of gaze shifts. The éatt saliency shaped in the vein of [6]. Indeed, the integration
is a research trend that is recently gaining currency in tiof eye guidance by interlocking ES and a full Bayesian
eye movement realm [23], [24]. For instance, when Eq. (18presentation of objects [6] and context [7] is the matfer o
is exploited for within-patch exploration, it generatesratfi ongoing research. It may be also worth noting that here eye
order Markov process, which is compatible with most recegtiidance interacts with patches rather than the wholersalie
findings [25]. map (differently from [22]). Thus, the ES model is to be
Further, this approach may be developed for a principledhturally exploited for object-based attention schemadging
modeling of individual differences and departure from epton the notion that proto-objects drive the initial sampliofy
mality [13] since providing cues for defining the informathe visual scene [10], [40]. In our model, at any timethe
notion of scanpath idiosyncrasy in terms of individual gazdynamic proto-object map is formed by the foraging eye,
shift distribution parameters. The latter represents aiatu by considering both local and global information within the
issue both for theory [3], [19], [23] and applications [30]frame of the current oculomotor action. This is a possible
Meanwhile, it stresses the importance of the role of the motaay to account for the very notion of proto-objects as that of
component, which is often neglected in the literature [B8]] a "constantly regenerating flux” advocated by Rensink [40],
One issue is how the approach presented here relatesvtich makes proto-objects the bulk of interaction between
other works in the literature. As pointed out from the beperceptual and motor processes in computational models of
ginning, scanpath variability has been abundantly ovéedo visual attention [10].
in the current literature (cfr., [4]). But there are few ruta Finally, beside theoretical relevance for modelling human
exceptions. In [61] simple eye-movements patterns, in tlhehavior, the randomness of the process can be an advantage i
vein of [19], are straightforwardly incorporated as a priocomputer vision and learning tasks. For instance, in [5Bhi&
of a dynamic Bayesian network to guide the sequence loéen reported that a stochastic attention selection mexhan
eye focusing positions on videos. The model presented (& refinement of the algorithm proposed in [33]) enables the
[62] embeds at least one parameter suitable to be tunedi-tub robot to explore its environment up to three times
obtain different saccade length distributions on statiages, faster compared to the standard WTA mechanism [5]. Indeed,

Tos
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stochasticity makes the robot sensitive to new signals ajd]
flexibly change its attention, which in turn enables effitien
exploration of the environment as a basis for action le@rnin
[59], [60].
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