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Ecological Sampling of Gaze Shifts
Giuseppe Boccignone and Mario Ferraro

Abstract—Visual attention guides our gaze to relevant parts
of the viewed scene, yet the moment-to-moment relocation of
gaze can be different among observers even though the same
locations are taken into account. Surprisingly, the variability of
eye movements has been so far overlooked by the great majority
of computational models of visual attention.

In this paper we present the Ecological Sampling model, a
stochastic model of eye guidance explaining such variability.
The gaze shift mechanism is conceived as an active random
sampling that the ”foraging eye” carries out upon the visual
landscape, under the constraints set by the observable features
and the global complexity of the landscape. By drawing on results
reported in the foraging literature, the actual gaze relocation is
eventually driven by a stochastic differential equation whose noise
source is sampled from a mixture ofα-stable distributions.

This way, the sampling strategy proposed here allows to mimic
a fundamental property of the eye guidance mechanism: where
we choose to look next at any given moment in time is not
completely deterministic, but neither is it completely random

To show that the model yields gaze shift motor behaviors that
exhibit statistics similar to those displayed by human observers,
we compare simulation outputs with those obtained from eye-
tracked subjects while viewing complex dynamic scenes.

Index Terms—Visual attention, eye movements, salience,α-
stable processes, Ĺevy flight, foraging.

I. I NTRODUCTION

I N this paper we shall consider the problem of the variability
of visual scanpaths (the sequence of gaze shifts) produced

by human observers. When looking at natural movies under
a free-viewing or a general-purpose task, the relocation of
gaze can be different among observers even though the same
locations are taken into account. In practice, there is a small
probability that two observers will fixate exactly the same
location at exactly the same time. Such variations in individual
scanpaths (as regards chosen fixations, spatial scanning order,
and fixation duration) still hold when the scene contains
semantically rich ”objects”. Variability is even exhibited by the
same subject along different trials on equal stimuli. Further, the
consistency in fixation locations between observers decreases
with prolonged viewing [1]. This effect is remarkable when
free-viewing static images: consistency in fixation locations
selected by observers decreases over the course of the first few
fixations after stimulus onset [2] and can become idiosyncratic.

Challenges: Although the ability to predict where a human
might fixate elements of a viewed scene has long been of
interest in the computational vision community [3], [4], the
problem in question has hitherto been overlooked. Indeed,
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a computational model of visual attention and eye guidance
should predict where will the eyes select the target of the
next fixation by providing: i) a mappingviewed scene 7→ gaze
sequence; ii) a procedure that implements such mapping. One
paradigmatic example is the most prominent model in the
literature proposed by Ittiet al [5]. In this model, attention
deployment is explained in terms of visual salience as the
output of a competitive process between a set of basic contrast
features. Eye guidance is conceived as a Winner-Take-All
(WTA) selection of most salient locations.

Nevertheless, most approaches focus on computing a map-
ping from an image, or, less frequently, from an image se-
quence to a representation suitable to ground the eye guidance
process (e.g., see the recent review by Borji and Itti [4]). Such
representation is typically shaped in the form of a saliency
map, which is derived either bottom-up, as in [5], or top-
down modulated by cognitive and contextual factors (e.g.,
[6], [7]). The saliency map is then evaluated in terms of
its capacity for predicting the image regions that will be
explored by covert and overt attentional shifts according to
some evaluation measure [4]. The problem of eye guidance is
somehow neglected or, if needed for practical purposes [8],
it is solved by adopting some deterministic choice procedure.
The latter is usually based on thearg max operation [9]. The
aforementioned WTA scheme [5], [9], or the selection of the
proto-object with the highest attentional weight [10] are two
examples. Even when probabilistic frameworks are used to
infer where to look next, the final decision is often taken via
the maximum a posteriori (MAP) criterion, which again is
an arg max operation (e.g., [11]–[15]), or variants such as
the robust mean (arithmetic mean with maximum value) over
candidate positions [16].

Thus, as a matter of fact, the majority of models that have
been proposed so far (with few notable exceptions discussed
afterward), hardly take into account one fundamental feature
characterizing human oculomotor behavior: where we choose
to look next at any given moment in time is not completely
deterministic, but neither is it completely random [17]. Indeed,
even though the partial mappingviewed scene 7→ salience
is taken for granted (which could be questioned under some
circumstances, [2]), current accounts of the subsequent step,
i.e. salience 7→ gaze sequence, are still some way from
explaining the complexities of eye guidance behavior. In the
work presented here we attempt at filling this gap.

Our approach: We assume that the gaze sequence is gen-
erated by an underlying stochastic process, accounting for
several factors involved in the guidance of eye-movements
(e.g., stochastic variability in neuromotor force pulses [18],
systematic tendencies in oculomotor behavior [19], see Section
II).

The ultimate aim of the present study is to develop a model
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that describes statistical properties of gaze shifts as closely as
possible. Experimental findings have shown that human gaze
shift amplitude distributions are positively skewed and long-
tailed (e.g., [19]). Drawing on results reported in the foraging
literature, where similar distributions characterize themoment-
to-moment relocation of many animal species between and
within food patches [20], [21], we introduce a composite
random walk model for the ”foraging eye”, which we name
Ecological Sampling (ES).

The ES scheme, discussed in Section III, models the eco-
logical exploration undertaken by the ”foraging eye” while
stochastically sampling a complex time-varying visual land-
scape (here an image sequence) represented in terms of
information patches. In the ES model the eye guidance strat-
egy amounts to choose where to look next by sampling
the appropriate motor behavior (i.e., the action to be taken:
fixating, pursuing or saccading), conditioned on the perceived
world and on previous action. More precisely, the appropriate
oculomotor behavior is sampled from a mixture ofα-stable
distributions. The choice and the execution of the oculomotor
behavior depend upon both the local information propertiesof
patches and their global configuration within the time-varying
landscape (complexity).

To show that the model yields gaze shift motor behaviors
that exhibit statistics similar to those pertaining to human
observers, in Section IV we compare ES outputs with those
obtained from eye-tracked subjects viewing complex videos
and collected in a publicly available dataset.

Contributions: The main contributions of this paper lie in
the following. 1) A novel and general probabilistic frame-
work for eye guidance on complex time-varying scenes is
provided, which revises an early conjecture presented in [22]
and grounds its assumptions on empirical analysis of eye-
tracked data. 2) The ES guidance mechanism can mimic
variability in scanpaths close to that exhibited by human
subjects. 3) The scanpath results from the composition of
random walks whose stochastic part is driven by different
α-stable components. This allows to treat different types of
eye movements within the same framework, thus making a
step towards the unified modeling of different kinds of gaze
shifts, which is a recent trend in eye movement research
[23], [24]. 4) The gaze is deployed at patches, i.e. proto-
objects, rather than points (differently from [22]). Thus,the
eye guidance mechanism could be straightforwardly integrated
with a probabilistic object or context-based visual attention
scheme [6], [7].

II. BACKGROUND

Eye movements such as saccades and smooth pursuit,
followed by fixations, play an important role in human vision.
They allow high-spatial-frequencysampling of the visual envi-
ronment by controlling the direction of the foveal projections
(the center of best vision) of the two eyes [23]. Frequent
saccades avoid building detailed models of the whole scene
[2] and are a characteristic mode of exploratory movements
across a wide range of species and types of visual systems.

The pursuit system uses information about the speed of
a moving object to produce eye movements of comparable

speed, thereby keeping the image of the object on or near the
fovea.

Fixations themselves are not simply the maintenance of the
visual gaze on a single location but rather a slow oscillation
of the eye [23]. They are never perfectly steady and different
mechanisms can be at their origin, e.g., microsaccades [25].
Thus eye fixations are better defined as the amount of contin-
uous time spent looking within a circumscribed region (e.g.,
minimum 50 milliseconds within a spatially limited region,
typically 0.5 − 2.0◦ degrees of visual angle [26]).

The variability characterizinghow we move the eyes occurs
ubiquitously, and it may mediate a variety of motor and
perceptual phenomena [3], [19]. At a low-level, variability
in motor responses originates from endogenous stochastic
variations that affect each stage between a sensory event and
the motor response [18]. At this level the issue of stochasticity
in scanpaths, debated in early studies [27], [28], may be more
generally understood on the basis that randomness assumes a
fundamental role in adaptive optimal control of gaze shifts; in
this perspective, variability is an intrinsic part of the optimal
control problem, rather than being simply ”noise” [29].

At a higher level it might reflect the individual’s learnt
knowledge of the structure of the world, the distribution of
objects of interest, and task parameters. The latter factors can
be summarized in terms of oculomotor tendencies or biases
[19]. Systematic tendencies in oculomotor behavior can be
thought of as regularities that are common across all instances
of and manipulations to the behavior. Under certain conditions
these provide a signature of the oculomotor behavior peculiar
to an individual (the idiosyncrasy of scanpaths [2], [30]).
Oculomotor biases can also be considered as mechanisms tied
to strategies that are optimal to minimize search time and
maximize accuracy [31].

Tatler and Vincent in their elegant study [19] were the
first to show that exploiting these oculomotor biases, the
performance of a salience model can be improved from56%
to 80% by including the probability of saccade directions
and amplitudes. Strikingly, they found evidence that a model
based on oculomotor biases alone performs better than the
standard salience model. However, they did not provide neither
a formal characterization of the distributions at hand, nora
computational procedure to generate gaze shifts, since they
directly exploited histograms of saccade directions and ampli-
tudes gathered from the participants to the experiment.

Such tendencies can be detected in saccade amplitudes,
which show a positively skewed, long-tailed distribution in
most experimental settings in which complex scenes are
viewed [19]. Similarly, long-tailed distributions have been
recently reported on natural movies [1].

More generally, the idea of inferring, through sampling,
the properties of a surrounding, uncertain world (either a
natural landscape or a fictitious one such as a probability
distribution) can be related to the notion of random walk
biased by an external force field. In continuous time ad-
dimensional random motion of a point, with stochastic position
r(t), under the influence of a force field can be described by
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the Langevin stochastic equation [32]

dr(t) = g(r, t)dt + D(r, t)ξdt. (1)

The trajectory of the variabler is determined by a determin-
istic partg, the drift, and a stochastic partD(r, t)ξdt, where
ξ is a random vector andD is a weighting factor. Note that
in many applications [33]g(r, t) is modeled as a force field
due to a potentialV (r, t), that isg(r, t) = −∇V (r, t).

The stochastic part of the motion is determined by the
probability density functionf from which ξ is sampled, and
different types of motion can be generated by resorting to the
class of the so calledα-stable distributions [34]. These form a
four-parameter family of continuous probability densities, say
f(ξ; α, β, γ, δ). The parameters are the skewnessβ (measure
of asymmetry), the scaleγ (width of the distribution) and the
location δ and, most important, the characteristic exponent
α, or index of the distribution that specifies the asymptotic
behavior of the distribution. The relevance ofα derives from
the fact that the probability density function (pdf) of jump
lengths scales, asymptotically, asl−1−α. Thus, relatively long
jumps are more likely whenα is small. By samplingξ ∼
f(ξ; α, β, γ, δ), for α ≥ 2 the usual random walk (Brownian
motion) occurs; ifα < 2 , the distribution of lengths is “broad”
and the so called Lev́y flights take place.

In a seminal paper [35], Brockmann and Geisel argued
that a visual system producing Lévy flights implements a
more efficient strategy of shifting gaze in a random visual
environment than any strategy employing a typical scale in
gaze shift magnitudes. Further evidence of Lévy diffusive
behavior of scanpaths has been presented in [36]. Potential
functions in a Langevin equation have been first used in [33],
to address scanpath generation in the framework of aforaging
metaphor.

Indeed, the heavy-tailed distributions of gaze shift ampli-
tudes are close to those characterizing the foraging behavior
of many animal species. Lévy flights have been used to model
optimal searches of foraging animals, namely their moment-
to-moment relocations/flights used to sample the perceived
habitat [20]. However, the general applicability of Lévy flights
in ecology and biological sciences is still open to debate. In
complex environments, optimal searches are likely to result
from a mixed/composite strategy, in which Brownian and
Lev́y motions can be adopted depending on the structure
of the landscape in which the organism moves [21]. Lévy
flights are best suited for the location of randomly, sparsely
distributed patches and Brownian motion gives the best results
for the location of densely but random distributed within-patch
resources [37].

A preliminary attempt towards a composite sampling strat-
egy for modelling gaze shift mechanisms has been presented
in [22]. However, that approach only conjectured a simple
binary switch between a Gaussian and a Cauchy-like walk.
While providing some promising results, the approach lacked
of a general framework and did not ground its assumptions on
empirical analysis of eye-tracked data. In the work presented
here, experimental data analysis has been exploited to sub-
stantially revise [22] and to formulate the general ES model
detailed in the following Section.

Notations: The notations used in Section III are listed in the
following:

I(t) a snapshot of the raw time-varying natural
habitat at timet, i.e., a frame of the input
video I;

F(t) the observable features of the habitat;
W(t) the set of random variables (RV) charac-

terizing the perceived time-varying natural
habitat;

A(t) the set of RVs characterizing an oculomo-
tor behavior, briefly, the action within the
habitat;

S(t) the set of RVs characterizing the salience
landscape of the habitat;

O(t) the set of RVs characterizing the patches of
the habitat;

M(t) the patch map
L the spatial support of the video frameI(t);
r(t) a point of coordinates(x, y) ∈ L;
rF (t) the gaze fixation position at timet, i.e. the

Focus of Attention (FOA) center;
s(r, t) a binary r. v. labelling locationr ∈ L as

salient or non salient;
NP total number of patches;
θp shape parameters of patchp, i.e., location

µp and covarianceΣp ;
mp(r, t) a binary RV labelling locationr ∈ L as

belonging or not to patchp;
Ni,p total number of interest points generated

from patchp;
ri,p the i-th interest point generated from patch

p;
x(1 : t) shorthand notation for the temporal se-

quencex(1), x(2), · · · , x(t);
K the number of possible actions;
k action index, in the range[1, · · · , K];
z(t) categorical RV taking values in[1, · · · , K];
πk(t) probability of choosing actionk at time t;
π(t) the set of probabilities{πk(t)}K

k=1;
νk(t) hyper-parameter of the Dirichlet distribu-

tion overπk(t);
ν(t) the set of hyperparameters{νk(t)}K

k=1;
w(rc) a cell or window, centered atrc, i.e., the

elementary unit to partition the supportL
in the configuration space;

Nw the number of cells in the configuration
space;

H(t) the Boltzmann-Gibbs-Shannon entropy of
the configuration space;

Ω(t) the order parameter;
∆(t) the disorder parameter;
C(t) the complexity index;
ηk the set of parametersαk, βk, γk, δk shaping

the α-stable distribution tied to actionk;
ξk random vector of componentsξk,j sampled

from thek-th α-stable distribution;
NV the number of gaze attractors.
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III. T HE ECOLOGICAL SAMPLING MODEL

Let us assume that, at timet, the gaze position is set at
rF (t) (the center of the focus of attention, FOA). The ES
strategy is part of the action/perception cycle undertakenby
the observer and amounts to choose where to look next, i.e.
rF (t + 1), by sampling the appropriate motor behavior, or
actionA(t), conditioned on the perceived worldW(t) and on
previous actionA(t − 1). At the most general level it can be
articulated in the following steps:

1) Sampling the natural habitat:

W∗(t) ∼ P (W(t)|rF (t),F(t), I(t)); (2)

2) Sampling the appropriate motor behavior:

A(t)∗ ∼ P (A(t)|A(t − 1),W∗(t)); (3)

3) Sampling where to look next:

rF (t + 1) ∼ P (rF (t + 1)|A(t)∗,W∗(t), rF (t)). (4)

Here,P (W(t)|rF (t),F(t), I(t)) represents the world likeli-
hood as gauged through featuresF(t) derived from the phys-
ical stimulusI(t), which in turn is foveated at locationrF (t);
P (A(t)|W(t), rF (t)) is the probability of undertaking action
A(t) given the current state of affairsW(t), and previous
behaviorA(t − 1). Finally, P (rF (t + 1)|A(t),W(t), rF (t))
accounts for the gaze shift dynamics, that is the probability of
the transitionrF (t) → rF (t + 1).

A. Sampling the natural habitat

The ”foraging” eye, by gazing atrF (t), allows the observer
to gauge, at timet, the physical world through featuresF(t).
Differently from [22], the visible features serve the purpose of
structuring the habitatW(t) in terms of alandscape S(t) and
a set of landscapepatches O(t), i.e. W(t) = {S(t),O(t)}.

The landscape is defined as a map of spatially interest-
ing/uninteresting locationsS(t) = {s(r, t)}r∈L. Following
[38], we uses(r, t) as a binary random variable (RV) to label
point r as salient or non salient.

Under this assumption, the posterior
P (W(t)|rF (t),F(t), I(t)) in (2) can be fac-
torized as P (O(t),S(t)|rF (t),F(t), I(t)) =
P (O(t)|S(t))P (S(t)|rF (t),F(t), I(t)).

The probability P (S(t)|F(t), I(t), rF (t)) represents the
saliency map of such landscape, evaluated under the feature
matrix F(t), which is in turn obtained fromI(t) gazed at
rF (t) and thus foveated at that position. The foveated frame
Î is calculated by blurring the current frame using a Gaussian
function centered atrF (t). Eventually, the feature matrix is
obtainedF = F(̂I).

Such definition of saliency as a posterior probability on
locations is common to many methods in the literature (e.g.,
see [38] for bottom-up saliency computation or [6], for a
general top-down, object-based method). It is worth noting
that the model presented here needs not to rely on any specific
method for computing saliency.

Patches may be conceived in terms of foraging sites around
which food items (or moving preys) can be situated [39]. In

the visual attention realm, patches can stand for genericproto-
objects [9], [10], [38], [40], [41].

Thus, at any given timet, the observer perceives a setO(t)
of a number patches in terms of prey clusters, each patch
being characterized by different shape and location. More
formally, O(t) = (O(t), Θ(t)), whereO(t) = {Op(t)}

NP

p=1 is
the ensemble of patches andΘ(t) their parametric description.

In particular,Op(t) = {ri,p}
Ni,p

i=1 is a sparse representation
of patchp as the cluster of interest points (preys, food items)
that can be sampled from it. Patch sampling is driven by
the locations and the shapes of the habitat patches described
through the set of parametersΘ(t) = {Θp(t)}

NP

p=1.
More precisely, each patch is parametrized asΘp(t) =

(Mp(t), θp). The setMp(t) = {mp(r, t)}r∈L stands for a
map of binary RVs indicating at timet the presence or absence
of patchp. The overall map of patches within the habitat at
time t is given by M(t) =

⋃NP

p=1 Mp(t). This map may
be derived either by simple segmentation techniques of the
saliency map [38], [9], [41], or by exploiting higher level cues
[6].

The patch map provides the necessary spatial support for a
2D ellipse approximation of each patch, whose location and
shape are parametrized asθp = (µp, Σp) [10].

This way, the termP (O(t)|S(t)) can be factorized as
P (O(t), θ(t),M(t)|S(t)) = P (O(t)|θ(t),M(t),S(t))
P (θ(t)|M(t),S(t)) P (M(t)|S(t)).

Eventually, by assuming independent patches, the first sam-
pling step (2) boils down to the following sub-steps:

S∗(t) ∼ P (S(t)|F(Î(t))); (5)

M∗(t) ∼ P (M(t)|S∗(t)); (6)

for p = 1, · · · , NP

θ∗p(t) ∼ P (θp(t)|M
∗
p(t) = 1,S∗(t)), (7)

O∗
p(t) ∼ P (Op(t)|θ

∗
p(t),M∗

p(t) = 1,S∗(t)). (8)

The first sub-step samples the foveated salience map. The
second samples the patch map from the landscape. The third
derives patch parametersθ(t)p = (µp(t), Σp(t))).

Eventually, sub-step (8) generates clusters of interest points
on the landscape, one cluster for each patch. By assum-
ing a Gaussian distribution centered on the patch, i.e.
P (rp|θp(t),Mp(t),S(t)) = N (rp; µp(t), Σp(t)), Eq. (8) can
be further specified as:

ri,p ∼ N (rp; µp(t), Σp(t)), i = 1, · · · , Ni,p. (9)

Thus, the set of all interest points characterizing the habitat
can be obtained asO(t) =

⋃NP

p=1{ri,p(t)}
Ni,p

i=1 . Note thatO(t)
provides a sparse representation of the original saliency map,
since|O(t)| = Ns = Ni,p × Np ≪ |L|.

B. Sampling the appropriate motor behavior

We represent the process of selecting the most appropriate
motor behavior, which we briefly call anaction, as a two-
component process unfolding in time: the actual selection and
the evolution of parameters governing such selection. More
formally, an action is the pairA(t) = (z(t), πt), wherez(t)
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is a categorical RV withK statesz(t) = {z(t) = k}K
k=1, each

state being one possible action. The probabilities of choosing
one of K behaviorsπ(t) = {πk(t)}K

k=1 are the parameters
governing the multinomial choice ofz(t).

By letting the action choiceA(t) depend only on the
sampled interest points, then, we can factorizeP (A(t)|A(t −
1), O(t)) = P (z(t), π(t)|z(t − 1), π(t − 1), O(t)) =
P (z(t)|π(t))P (π(t)|π(t − 1), O(t)).

Since in our case, differently from [22], the motor behavior
is chosen amongK possible kinds,P (z|π) is the Multinomial
distribution Mult(z(t)|π(t)) =

∏K
k=1 [πk(t)]zk(t) with πk =

P (z = k|π).
The conjugate prior of the latter is the Dirichlet distribution,

P (π(t)) = Dir(π(t); ν(t)) =
Γ(

∑
k

νk(t)∏
k

Γ(νk(t))

∏
k πk(t)νk(t)−1,

whereΓ(·) is the Gamma function.,
Note that the transitionA(t − 1) → A(t), is governed by

the posterior transition densityP (π(t)|π(t − 1), O(t)). Since
here we are dealing with a kind of (discrete time) dynamical
system, this represents the transition over a time slice, that is
an instance of the process that actually has been running up
to time t.

Under first-order Markov assumption [42], the posterior
pdf can be fully written asP (π(t)|π(t − 1), O(1 : t)) ∝
P (O(t)|π(t))P (π(t−1)|O(1 : t−1)). Such recursive updating
can be analytically specified, in the case of the Dirichlet
distribution, by the hyper-parameter update

νk(t) = νk(0) + Nk(t), (10)

where, in Iverson’s notation,Nk(t) = N(t) [E = k] is
a count on events depending on the sparse representa-
tion O(t). To make this statement explicit, we will write
P (π(t)|ν(t), O(t)) = P (π(t)|ν(O(t))) to remark the depen-
dance of the hyperparameters onO(t).

Instead of using the configuration ofO(t) as the explanatory
variable influencing the motor behavior choice, we will use a
dependent variable, a global parameter, sayC(O(t)), providing
at a glance the ”gist” of the spatio-temporal configuration
of the landscape. One such outcome variable is the spatio-
temporal heterogeneity of the landscape.

For instance, in ecological modelling [43] a widely adopted
measure to gauge the heterogeneity is the landscape entropy
determined by dispersion/concentration of food items or preys.
Here, generalizing this approach, we useC(O(t)) (or more
simply C(t)) to capture the time-varying configurational com-
plexity of interest points within the landscape.

Following Shiner et al. [44], the complexityC(t) can be
defined in terms of order/disorder of the system:

C(t) = ∆(t) · Ω(t), (11)

where∆ ≡ H/Hsup is the disorder parameter,Ω = 1 − ∆
is the order parameter, andH the Boltzmann-Gibbs-Shannon
(BGS) entropy of the system withHsup its supremum.

Eq. (11) embodies the general principle underlying all
approaches undertaken to define the complexity of a dynamic
system: complex systems are neither completely random nei-
ther perfectly ordered and complexity should reach its maxi-
mum at a level of of randomness away from these extremes.

In the case of a time-varying visual landscape, a crowded
scene with many people moving represents a disordered sys-
tem (high entropy, low order) as opposed to a static scene
where no events take place (low entropy, high order). The
highest complexity is reached when specific events occur: two
persons meeting at a cross-road while a cyclist is passing by,
etc. What is observed in eye-tracking experiments on videos
[1] is that low complexity scenarios usually lead to longer
flights (saccadic behavior) so as to promptly gather more
information, whilst at the edge of order/disorder more complex
and mixed behaviors take place (e.g., intertwining fixations,
smooth-pursuit, and saccades). To formalize the relationship
between the complexity of the habitat and the choice of
behavior we proceed as follows.

We compute the BGS entropyH as a function of the
spatial configuration of the sampled interest points. The
spatial domainL is partitioned into a configuration space
of cells (rectangular windows), i.e.,{w(rc)}

Nw

c=1, each cell
being centered atrc. By assigning each interest point to the
corresponding window, the probability for pointrs to be within
cell c at time t can be estimated asP (c, t) ≃ 1

Ns

∑Ns

s=1 χs,c,
whereχs,c = 1 if rs ∈ w(rc) and 0 otherwise (see, Section
IV, for further details).

Thus,H(t) = −kB

∑Nw

c=1 P (c, t) log P (c, t), and (11) can
be easily computed. Since we are dealing with a fictitious
thermodynamical system, we set Boltzmann’s constantkB =
1. The supremum ofH(t) is obviouslyHsup = lnNw and it
is associated to a completely unconstrained process, that is a
process whereH(t) = const, since with reflecting boundary
conditions the asymptotic distribution is uniform.

Given C(t), we partition the complexity range in order to
defineK possible complexity events{EC(t) = k}K

k=1. This
way the hyper-parameter update (10) can be rewritten as the
recursion

νk(t) = νk(t − 1) +
[
EC(t) = k

]
, k = 1, · · · , K. (12)

As previously discussed, three possible events will be even-
tually identified (see Section IV) to provide the gist of the
spatio-temporal habitat: ”ordered dynamics”, ”edge dynamics”
and ”disordered dynamics”, each biasing the process toward
a specific gaze shift behavior as observed in eye-tracked data
[1].

Summing up, the action sampling step (3) amounts to:
i) computing the complexity of the landscape as a function
of sampled interest pointsO(t); ii) updating accordingly the
hyperparametersνk(O(t)) (12); iii) sampling the actionA∗(t)
as:

π∗(t) ∼ Dir(π|ν(O(t))); (13)

z∗(t) ∼ Mult(z(t)|π∗(t)). (14)

C. Sampling where to look next

Given actionA∗(t), we can rewrite the last sampling step
in (4) as:

rF (t + 1) ∼ P (rF (t + 1)|z∗(t) = k, θ∗(t), η, rF (t)). (15)
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Fig. 1. Results of theα-stable fit of the smooth pursuit and saccadic
components for themtvclip04. The left column figures show the empirical
distribution with superimposed the fittedα-stable distributions; the right
column figures show the double log-plot of the correspondingCCDF. The top
row represents the fitting results for the smooth pursuit component (α = 2,
β = 1, γ = 6.20, δ = 12.88; K-S statistics0.1200, p = 0.4431). The
middle row presents the results obtained for theα-stable fit of the first saccadic
component (α = 2, β = 1, γ = 26.10, δ = 101.13; K-S statistics0.1398,
p = 0.301). The bottom row presents the results obtained for the second
saccadic component (α = 1.72, β = 1, γ = 41.25, δ = 251.25; K-S
statistics0.1786, p = 0.7198s).

Hereη play the role of the actual ”motor” parameters govern-
ing the shift of gaze.

Clearly, the choice among the different oculomotor
behaviors follows a Multinomial distribution,P (rF (t +

1)|z(t), θ(t), η, rF (t)) =
∏

z(t) [P (rF (t + 1)|rF (t), η)]
z(t)

where P (rF (t + 1)|z(t) = k, θ∗(t), η, rF (t)) = P (rF (t +
1)|θ∗(t), ηk, rF (t)) is the oculomotor state transition proba-
bility of the shift rF (t) → rF (t + 1), which is generated
according to motor behaviorz∗(t) = k and thus regulated by
parametersηk.

We samplerF (t + 1) by making explicit the stochastic
dynamics behind the process [45]. To this end, Eq. (1) is
reformulated as a two-dimensional dynamical system in which
the drift term depends on a potentialV and the stochastic part
is driven by one-of-K possible types ofα-stable motion

drF (t) = −∇V (rF , t)dt + D(rF , t)ξk(t)dt. (16)

The drift term, the first term on the r.h.s. of (16), is modeledas
follows. In a foraging framework, animals are expected to be
attracted or repelled from certain sites; thereforeV (rF , t) can
be assumed to depend on the distance between the position
rF of the animal and the positionr∗ of the nearest of such
sites. For simplicity, we defineV (rF , t) = 1

2 |rF (t)− r∗(t)|2.
Then, we selectNV sites (according to some rule, e.g, the

top-NV most attractive). By assuming that suchattractors act
as independent sources, the gradient of the potential can be
eventually obtained from the linear combination ofNV local

potentials,

−∇V (rF , t) = −
NV∑

p=1

(rF (t) − rp(t)). (17)

The selection of attractorsrp(t) clearly depends on the
action statek. If a fixation / pursuit behavior has been sampled,
these will be chosen as theNV most valuable points sampled
from the current patch, that isNV ≤ Ni,p. Otherwise, the
attractors can be straightforwardly identified with patch centers
µp(t), i.e., NV = NP . The latter are to be considered the
possible targets for medium or large shifts of gaze (saccades).

Following [32], the componentsξk,j , j = 1, 2 are sampled
from an α-stable distributionf(ξ; ηk) and they are assumed
to be statistically independent, so thatD(rF , t) is a diagonal
matrix. The elements ofD(rF , t) can be determined on the
basis of theoretical consideration or by the experimental data
[32]. Here we have chosen to set the elements ofD equal
to the widthγk of the α-stable distribution characterizing the
random walk at timet, namelyD(rF , t) = γkI with I the
2 × 2 identity matrix.

By using these assumptions and by resorting to the Euler-
Maruyama discretization [46], for a small time stepτ =
tn+1 − tn, the SDE (16) is integrated as:

rF (tn+1) ≈ rF (tn) −
NV∑

p=1

(rF (tn) − rp(tn))τ

+ γkIτ1/αk ξk. (18)

This step provides the explicit procedure for sampling the
next gaze shift.

IV. SIMULATION

Simulations have been carried out to generate statistics of
gaze shift behavior of the model. The latter have been com-
pared with those exhibited by human observers (subsection
IV-E).

The rationale is that if observed gaze shifts are generated
by an underlying stochastic process the distribution functions
and the temporal dynamics of eye movements should be
completely specified by the stochastic process [47]. At the
same time, different stochastic processes often yield different
marginal distribution functions in the outcome variables;thus,
knowing the precise distribution functions of a RV should sug-
gest plausible generative mechanisms and rule out improbable
ones.

Following previous work in the literature [35], the ex-
periments were specifically designed to confront gaze shift
magnitude distribution of subjects scanning videos (collected
in a publicly available dataset, subsection IV-A), with those
obtained by running an implementation of the ES model
(detailed in subsection IV-C). Indeed, the study of shift am-
plitude distribution, and in particular of the corresponding
complementary cumulative distribution function (CCDF), is
the standard convention in the literature of different fields
dealing with anomalous random walks such as foraging [21],
human mobility [48], statistical physics [49]. In this respect,
a preliminary, non trivial problem to solve is to derive from
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Fig. 2. The Ecological Sampling implementation at a glance.From top to
bottom, left to right: the original frame; the foveated frame; the raw saliency
map; detected patches; sampled interest points (drawn as white disks for
visualization purpose); the sampled FOA

recorded eye-tracked data the numberK of motor behaviors
and to infer the relatedα-stable distribution parameters; to
such end a fitting procedure has been devised, which is
presented in subsection IV-B.

A. Dataset

We used the CRCNS eye-1 dataset created by University of
South California. The dataset is freely available and consists
of a body of 520 human eye-tracking data traces recorded
(240 Hz sampling rate) while normal, young adult human
volunteers watched complex video stimuli (TV programs,
outdoors videos, video games), under the generic task of ”fol-
lowing main actors and actions”. It comprises eye movement
recordings from eight distinct subjects watching50 different
video clips (MPEG-1,640×480 pixels,30 fps, approximately
25 minutes of total playtime; the Original dataset), and from
another eight subjects watching the same set of video clips
after scrambling them into randomly re-ordered sets of1− 3s
clippets (the MTV-style dataset). See [50] for a description
and https://crcns.org/files/data/eye-1/crcns-eye1-summary.pdf
for more details.

B. Gaze shifts statistics

We studied the distributions of gaze magnitudes by analyz-
ing eye-tracking results collected in the CRCNS database To
this end, gaze shift samples from all the traces of the same
video, regardless of the observers, are aggregated together and
used in the same distribution. The assumption is that every

observer on the same video has the same statistical ”mobility
tendency” in terms of gaze shifts; then this aggregation is
reasonable because every trace obtained from the same videois
subject to the same or similar saliency constraints (i.e. visual
landscape). The same technique is used in other studies of
Levy walks (e.g., [48]) but also in eye-tracking experiments
[2]. In the CRCNS database, eye-tracker samples are individu-
ally labelled as fixation, saccade or smooth pursuit, from which
it is possible to collect empirical gaze magnitude distributions
of eye-tracked subjects. Saccade lengths are straightforward to
compute as the Euclidean distance between saccade start/end
coordinates. For what concerns smooth pursuit, which indeed
represents a kind of Continuous Time Random Walk, since
movies were displayed in the original experiment at a rate of
33.185 ms/frame, to be consistent, we subsampled by8 each
smooth pursuit sub-tracks in order to work at a frame-rate
basis, thus making feasible to compare with the simulation.
The same was done for fixational movements, which have been
aggregated with pursuit samples.

Given the empirical distributions of smooth pursuit and
saccades, it is possible to individually fit such distributions
in order to derive the parameters of the underlying alpha-
stable distribution. The quality of the fit is assessed via the
two-sample Kolmogorov-Smirnov (K-S) test, which is very
sensitive in detecting even a minuscule difference between
two populations of data. For a more precise description of
the tail behavior, i.e. the laws governing the probability of
large shifts, the upper tail of the distribution of the gaze shift
magnitudeX has also been considered. This can be defined
asF (x) = P (X > x) = 1−F (x), whereF is the cumulative
distribution function (CDF). Consideration of the upper tail, or
complementary CDF (CCDF) of jump lengths is the standard
convention in the literature.

Fig. 1 shows one example of the typical behavior of pursuit
and saccade gaze shifts in terms of both the shift magnitude
distribution and its corresponding upper tail behavior.

We experimentally found that any attempt to fit a uniqueα-
stable function to the empirical distribution of saccades fails to
pass the K-S test. This could be expected by visual inspection
of the saccade amplitude histogram, which suggest a mixture
of two saccadic behaviors. In order to separate the two
processes so to use them in the gaze shift generative process
(18), one could resort to anα-stable mixture fitting method.
Unfortunately, most of theα-stable mixture treatments that
have been developed are either tailored for specific cases
(e.g., symmetric distributions, Normal-Cauchy distributions,
etc) and often rely on heavy Monte Carlo simulations [51].
Thus, we opted for an indirect but effective technique.

First, we hard-clustered the gaze shift samples into an
optimal number ofα-stable mixture components via a Varia-
tional Bayes Student-t Mixture Model (VBSTMM, see [52] for
detailed presentation). The reason for using thet-distribution
for identifying components stems from the fact that this
distribution might be regarded as the strongest competitor
to the α-stable distribution. While theα-stable distribution
implies extremely slowly decreasing tails, thet distribution
exhibits power tails but has the advantage of finite moments.
In a second step, each mixture component was separately
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used forα-stable parameter estimation. The estimation of the
α-stable distribution is complicated by the aforementioned
nonexistence of a closed form pdf. Here we have used the
approximated parameter estimator proposed in [53].

As a result, what can be observed is that the component
accounting for smooth pursuit and fixations (comp. #1) is
readily separated from those explaining saccades; in turn,sac-
cade distribution optimally splits in twoα-stable components,
a first one, in most cases Gaussian-likeα ≈ 2 (comp. #2)
related to saccades of medium length, and a second one (comp.
#3) related to saccades of higher magnitude. An example
of such pattern is shown in Fig. 1. Interestingly enough,
such multi-component statistics for saccades provides a rather
different result from those usually reported in the literature
when considering static images [35], [33] or conjectured for
video analysis [22].

C. Implementation details

In order to implement the first sampling step specified in
(5), the saliency mapP (S(t)|F(t), I(t), rF (t)) is derived as
follows. Given a fixation pointrF (t) at time t (the frame
center is chosen fort = 1), we simulate the foveation
process by blurring the current RGB frameI(t) of the input
sequence through a Gaussian function centered atrF (t). The
foveated frame is obtained aŝI(r, t) = I(r, t) exp{−(r(t) −
rF (t))Σ−1

FOA(r(t) − rF (t))T }, where ΣFOA = σ2
I, σ =

|FOA|. Here |FOA| indicates approximately the radius of
a FOA, where|FOA| ≈ 1/8 min[width, height] of the frame
spatial supportL.

The foveated framêI(·, t), is used to compute feature
matrix F(t) and saliencyP (S(t)|F(̂I(t))) through the Self-
resemblance method described in [38]. We initially experi-
mented with the Ittiet al. [5], the Bayesian Surprise [54] and
the Graph-Based Visual Saliency [55] methods. However, Self-
resemblance provides comparable performance and meanwhile
it can handle both static and space-time saliency detection; it
avoids explicit motion estimation and meanwhile is able to
cope with camera motion.

Next we approximate the sampling steps (6) and (7) to
obtainM(t) andθp(t) as follows.

The proto-object mapM(t) is simply drawn from
P (S(t)|F(̂I(t))) by deriving a preliminary binary map
M̃(t) = m̂(r, t)}r∈L, such that m̂(r, t) = 1 if
P (s(r, t)|F(̂I(t))) > TM , and m̂(r, t) = 0 otherwise. The
thresholdTM is an adaptive threshold similar to the methods
proposed in [41] and [38], which is determined as three times
the mean saliencyE [S(t)] of the frame [41]. The technique of
settingTM so as to achieve95% significance level in deciding
whether the given saliency values are in the extreme tails ofthe
pdf provides comparable results [38]. Indeed, both procedures
are based on the assumption that a salient proto-object is a
relatively rare region and thus result in values which are in
the tails ofP (S(t)|F(̂I(t))).

Following [9], M(t) = {Mp(t)}
NP

p=1 is obtained as
Mp(t) = {mp(r, t)|ℓ(B, r, t) = p}r∈L, where the function
ℓ labelsM̃(t) aroundr using the classic Rosenfeld and Pfaltz
algorithm (implemented in the Matlabbwlabel function). We
setNP = 8 to retain the most important patches.

Fig. 3. An example of typical results obtained along the simulation. In the
center of the figure the plot shows the evolution of order (dashed line) and
disorder parametersΩ and ∆ as a function of frame number. From top to
bottom, the first dashed box represent a time window where∆ > Ω and
an excerpt of the resulting saccadic exploratory behavior is shown in the
FOA sequence sampling the basket ball actions (top right frame sequence);
the second time window reports a switch to a smooth-pursuit regime due to
Ω > ∆ with corresponding foveations on the most important objectin the
scene (player close-up) shown in the left frame sequence. The successive time
window witnesses a new behavioral switch (∆ > Ω ) to a prevalent saccadic
explorations of the sport game dynamics (bottom right sequence).

The sampling of patch parametersθp(t) is approximated
as follows. By assuming a uniform priorP (θp(t)), then
P (θp(t)|Mp(t),S(t)) ∝ P (Mp(t),S(t)|θp(t)), so thatθp(t)
reduce to parameters (rather than RVs) that can be estimated
via any maximum-likelihood technique. In the simulation this
was obtained by adopting the technique by Halır and Flusser
[56], because of its numerical stability and computational
efficiency (due to non-iterativity). Once parametersθp(t) have
been computed, each patch is used to generate interest points
in a number proportional to the area of the ellipse describing
the patch. We setNs = 50 the maximum number of interest
points and for each patchp, and we sample{ri,p}

Ni,p

i=1 from
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a Gaussian centered on the patch as in (9). The number of
interest points per patch is estimated asNi,p = ⌈Ns×

Ap∑
p

Ap

⌉,

Ap = πσx,pσy,p being the area of patchp.
At this point we compute the order/disorder parameters. We

useNw = 16 rectangular windows (approximately covering
half of the area covered by a FOA), their size depending on
the frame size|L|. This choice also provides the best trade-off
between coarse to fine properties of the configuration space
and the numberNs of sampled interest points. The spatial
histogram of interest points is used to estimate empirically
the cell probability; the latter is then used to calculate the
BGS entropyH(t) of the interest point configuration space,
and eventually the disorder and order parameters,∆(t) and
Ω(t) to be used in Eq. ( 11) [44].

Note thatmax C(t) is achieved for∆(t) = Ω(t) = 0.5,

TABLE I
GAZE COMPONENTα-STABLE FITTING:RESULTS OBTAINED ON THE

TVSPORTS03 CLIP

Subject Comp. i αi βi γi δi

CZ i=1 2 1 4.06 7.15
i=2 2 1 22.44 60.82
i=3 1.9854 1 63.99 230.31

JA i=1 2 1 4.50 9.11
i=2 1 1 23.37 63.89
i=3 1.57 1 30.90 220.07

JZ i=1 1.99 0.08 4.34 9.70
i=2 2 -1 22.97 68.28
i=3 1.98 1 40.07 187.77

RC i=1 2 1 4.91 8.9
i=2 2 1 24.88 62.69
i=3 1.59 1 53.80 249.78

VN i=1 1.91 1 3.35 6.58
i=2 2 1 22.25 62.43
i=3 1.52 1 38.85 214.20

All i=1 2 1 4.42 8.11
subjects i=2 2 1 23.42 63.84

i=3 1.6 1 45.61 230.41
Ecological i=1 2 1 3.78 9.78
Sampling i=2 2 1 21.70 62.74

i=3 1.76 1 59.79 245.20

TABLE II
GAZE COMPONENTα-STABLE FITTING:RESULTS OBTAINED ON THE

MONICA03 CLIP

Subject Comp. i αi βi γi δi

CZ i=1 2 1 4.27 7.52
i=2 2 1 22.44 60.82
i=3 1.98 1 63.99 230.31

JZ i=1 2 -1 3.60 12.40
i=2 1.99 1 20.46 64.90
i=3 1.75 1 30.63 197.20

NM i=1 2 1 4.76 7.81
i=2 1.98 1 21.32 48.8
i=3 1.23 1 32.64 292.68

RC i=1 1.55 1 2.68 6.92
i=2 2 1 22.47 62.57
i=3 1.43 1 33.50 214.15

VN i=1 2 1 4.48 7.50
i=2 2 1 24.15 59.05
i=3 1.78 1 29.90 197.71

All i=1 2 1 4.47 7.54
subjects i=2 2 1 22.87 55.6

i=3 1.51 1 36.69 231.06
Ecological i=1 2 1 3.80 10.57
Sampling i=2 2 1 22.14 58.061

i=3 1.63 1 64.18 273.86

Fig. 4. Analysis of gaze shift dynamics from thetvsports03 video. From
left to right, the first column shows the double log plot of theCCDF derived
from the smooth-pursuit component; the center and right column, the plots
related to the two saccadic components. From top to bottom, the first five
rows show the CCDFs related to subjects CZ , JA, JZ, RC, VN; thesixth
row presents the CCDFs obtained from the gaze magnitude distribution of all
subjects. The bottom row presents the CCDF obtained from onerun of the
proposed algorithm.

thusmax C(t) = 0.25. By taking into account the results ob-
tained from eye-tracking data analysis, three complexity events
EC ∈ {1, 2, 3} are devised, which characterize corresponding
motor behaviorsk ∈ {1, 2, 3}: EC = 1 if Ω(t) > ∆(t)
and C < max C − ǫ indicating an ”ordered dynamics” of
the spatio-temporal habitat;EC = 3 if Ω(t) < ∆(t) and
C < max C − ǫ for ”disordered dynamics”; eventEC = 2
occurs within higher range of complexity,|C − max C| 6 ǫ
where ”edge dynamics” will take place. In the simulation the
range valueǫ = 0.01 has been experimentally determined.
The empirical consequence of such event detection procedure
is that an ordered dynamics of the habitat will most likely
bias the shift dynamics toward quasi-Brownian shifts (fixation
/ pursuit regime), whilst in highly disordered environment,
longer shifts are more likely to occur (saccadic regime); atthe
edge between these regimes, where complexity is high since
order is dynamically competing with disorder,Ω(t) ≈ ∆(t),
intermediate length shifts and mixed behaviors will take place
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Fig. 5. Analysis of gaze shift dynamics from themonica03 video. From
left to right, the first column shows the double log plot of theCCDF derived
from the smooth-pursuit component; the center and right column, the plots
related to the two saccadic components. From top to bottom, the first five
rows show the CCDFs related to subjects CZ ,JZ, NM, RC, VN; thesixth
row presents the CCDFs obtained from the gaze magnitude distribution of all
subjects. The bottom row presents the CCDF obtained from onerun of the
proposed algorithm.

(see again Figure 3.
Having detected the spatio-temporal ”gist” of the habitat,the

hyperparameters of the Dirichlet distribution can be updated
via (10). This is sufficient to set the bias of the ”behavioral
choice” (13) and the choicez = k is made (14).

The actual values of the motor parametersηk =
{αk, βk, γk, δk} corresponding to theK behaviors have been
derived from the clips of the MTV-style dataset; the rationale
behind this choice stems from the fact that since the latter are
assembled by mixing different clips of the ’Original’ dataset,
parameters inferred on such clips are suitable to provide a
sort of average motor behavior suitable for different typesof
videos.

For the examples shown hereη1 = {α1 = 2, β1 = 1, γ1 =
6.20, δ1 = 0}, η2 = {α2 = 2, β2 = 1, γ2 = 26.10, δ2 =
0}, η3 = {α3 = 1.72, β3 = 1, γ3 = 41.25, δ3 = 0}, where
we have setδk = 0, since in the sampling phase the drift is
accounted for by the deterministic component of Eq. (18).

Eventually, the new FOArt+1 is straightforwardly deter-

mined via (18). First, the drift components− [∂xV, ∂yV ]T are
computed via (17); then, given the parametersηk, the shift
lenght components are sampledξk,i ∼ f(ξk,i; ηk). The α-
stable random vectorξk was sampled using the well known
Chambers, Mallows, and Stuck procedure [57].

For what concerns the time sampling parameterτ = tn+1−
tn, n = 0, · · · , N , in order to work at the frame rate of30 fps,
by assuming the time intervalT = 1 sec andN = 30, the time
discretization parameter is set asτ = T/N = 0.03. [46]. An
illustrative example, which is representative of results achieved
on such data-set, is provided in Fig. 3, where the change of
motor behavior regime is readily apparent as a function of the
complexity of scene dynamics.

D. Computational cost

The system is currently implemented in plain MATLAB
code, with no specific optimizations and running on a 2.8
GHz Intel Core 2 Duo processor, 4 GB RAM, under Mac OS
X 10.5.81. As regards actual performance under such setting,
the average average elapsed time for the whole processing
amounts to2.175 spf (seconds per frame, frame size640×480
pixels). More precisely, once computed the foveated frame,
which takes an average elapsed time of0.044 spf, most of the
execution time is spent to compute features,1.155 spf, and
salience,0.846 spf. The average elapsed time for obtaining
patches is0.106 spf, 0.021 spf is spent for sampling interest
points, 0.001 spf is used to evaluate the complexity, and
eventually0.002 spf is used for sampling the new point of
gaze. Summing up, the actual average time concerning the
method proposed here, independently of feature and saliency
computation (which may vary according to the technique
adopted and related software and hardware optimizations),
amounts to0.130 spf. Clearly, the speed-up in this phase is
due to the fact that once the set of salient interest points has
been sampled, then subsequent computations only deal with
Ns points in the worst case, a rather sparse representation
of the original frame. For comparison purposes, the baseline
algorithm [5], which is representative of the class of methods
using the arg max operation [9] for determining the gaze
shift, takes an average elapsed time of1.058 spf for the
WTA computation, and0.001 spf for the subsequent inhibition
of return on the attended location. Elapsed times have been
obtained using the latest version of the saliency tool box using
the default parameters [9].

More generally, decision rules that boil down to theargmax
operation haveO(N) complexity, whereN is the size of the
input. The original WTA procedure itself isO

(
N2

)
, but with

specific optimization it can be reduced toO (N) complexity
[9]. In ES the decision where to look next can be evaluated
to O (Ns), yet Ns ≪ |L|. Eventually, to compare with proto-
object based methods that rely on the selection of the proto-
object with the highest attentional weight (O(N), with N the
number of proto-objects, e.g., [10]), the step specified by the
shift equation (18) should be considered, which isO(NV ),
NV ≤ Np.

1In the spirit of reproducible research, the MATLAB implementation code
of the ES model will be made available at http://boccignone.di.unimi.it/
Ecological Sampling.html
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E. Validation

In order to verify whether the proposed model can generate
statistics compared to those observed in eye-tracked subjects,
we run the procedure as described above on different videos
of the CRCNS ’Original’ dataset2.

The recorded FOA coordinates have been used to compute
the gaze magnitude distributions. Differently from the param-
eter estimation stage, here we assume unlabelled distributions
both for the ones obtained from ecological sampling and those
composing the data-set.

Then, for each video we cluster (label) each distribution
in three gaze components (smooth-pursuit and fixation + 2
saccade components) by means of VBMTS. Eventually the
two samples Kolmogorov-Smirnov test is computed between
each corresponding component obtained from algorithm gen-
erated and eye-tracked scanpaths considering both individual
observers and the ensemble of all observers. An example
of results obtained on the ”tvsports03” clip, which are
representative of the overall results obtained on the CNRS
datase is shown in Fig. 4. It can be seen that ES generated
scanpaths show strikingly similar gaze magnitude statistics
described in terms of the complementary CDFs plotted on
double log-scale. Table I shows the fittedα-stable component
parameters for each subject participating to the experiment,
the ensemble of subjects, and a scanpath generated by the ES
procedure. On this clip the KS test confronting the algorithm
generated and eye-tracked scanpaths fails for component1 of
subject RC (KS Statistics=0.25836; pValue=7.4646× 10−3)
and component3 of subject VN (KS Statistics=0.25032;
pValue=4.8712 × 10−2). Actually, such results are recovered
when gaze shift samples from all the scanpaths, regardless of
the observers, are aggregated together and used in the same
distribution (row 6).

A second example is provided in Fig. 5 showing results
obtained on the complexmonica03 video. Table II reports
the fitted α-stable parameters. In this second example the
Kolmogorov-Smirnov test is not satisfied in some individual
cases when the gaze component CDFs of the simulated scan-
path is compared to component1 of subjects NM (KS Statis-
tics= 0.55742; pValue=3.3615 × 10−19), RC (KS Statistics=
0.49375; pValue=2.8111×10−14) and component 2 of subject
VN (KS Statistics=0.36991; pValue=1.2179×10−4). However
this is more likely to happen due to the sparsity of samples
in such cases. Again, results are recovered by considering the
gaze shift distribution of the observer ensemble.

It is worth noting the general trend of a nearly Gaussian
behavior (α ≈ 2) of smooth pursuit / fixation(with a clear
exception of subject VN) and of the first saccadic components,
whilst the third component reveals a superdiffusive behavior
(α < 2). In the latter case the CCDF deviation between
the empirical data and the estimated distribution that can be
observed in the tail of the plot can be associated to the fact

2This paper has supplementary downloadable material available at http://
ieeexplore.ieee.org, provided by the authors. This includes two videos showing
the foveation sequences obtained on the clipsmonica03 andtvsports03 from
of the CRCNS ’Original’ dataset andreadme file. This material is2.24 MB
in size.

that empirical data are actually truncated (with respect tothe
image/field of view).

Finally, we compare the overall distributions of gaze shift
amplitudes from humans, the ES model and the baseline
argmax operation [9] (Fig. 6).

To this aim we extend to videos the procedure proposed
by Tatler et al. [2]. Note that in [2] human saccadic be-
havior on static images was compared against the WTA
method, whereas here human amplitude distributions are de-
rived from eye-tracking data of all subjects viewing each
video. Separate simulations are run for the corresponding
number of virtual observers viewing the same videos. The
same time-varying saliency map is used for both ES and
argmax methods. The empirical probability densitiesP (l)
shown in Fig. 6 have been calculated from the normalized
histograms of actual and simulated data. It can be seen that
ES generated distributions are close to the ones exhibited
by humans, whilst the distributions from theargmax sim-
ulations fail to capture the overall heavy-tailed shapes of
actual data. For thetvsports03 video (top plots) the mean,
median and mode values for human and simulated data
are: meanHum = 79.73, medHum = 53.15, modeHum =
2.23, meanES = 65.01, medES = 47.79, modeES = 2.1;
meanMAX = 32.36, medMAX = 13.89, modeMAX =
2. For the monica03 video (bottom plots) we obtained:
meanHum = 97.28, medHum = 66.94, modeHum = 1.41;
meanES = 107.14, medES = 87.36, modeES = 1.06;
meanMAX = 36.4, medMAX = 19.02, modeMAX = 15.

In particular, it can be noticed in both examples that,
apart from the shorter tails, major deviations ofargmax with
respect to humans (and ES) occur within the mid-range of
amplitudes, which is related to complex behavior. Clearly,the
slightly different trends between all distributions observed in
tvsports03 and those derived frommonica03 are due to the
different video content.

Actually, an even more striking difference was reported in
[2] between human data and the WTA simulated data. How-
ever, we must keep in mind that in [2] only static images and
amplitude distributions of saccades were considered. Indeed,
pictures, as opposed to natural videos, lack spatio-temporal
information and thus fall short of ecological plausibility[2].
Dynamic information mitigates the limitations of using low-
level saliency as the input representation since, so far, local
motion features and objects/actions are often correlated [3].
This consequence is captured in Fig. 6 for small amplitude
shifts, where theargmax model exhibits a trend that is near
to that of humans and ES.

V. D ISCUSSION AND CONCLUSION

In this work we have modeled a gaze shift model that
allows to mimic the variability of scanpaths exhibited by
human observers. The simulated behaviors are characterized
by statistical properties that are close to those of subjects eye-
tracked while watching complex videos. To the best of our
knowledge, the ES model is novel in addressing the intrinsic
stochasticity of gaze shifts and meanwhile it generalizes pre-
vious approaches proposed in the literature, [22], [33], [35],
[58]–[60].
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Fig. 6. Overall distributions of gaze shift amplitudesl from humans, the ES
model, and thearg max method. Top:tvsports03. Bottom:monica03 .

The core of such strategy relies upon using a mixture ofα-
stable motions modulated by the complexity of the scene. The
strategy exploits long-tailed distributions of gaze shiftlengths
for the analysis of dynamic scenes, which have been usually
considered limiting to static images.

The composition of random walks in terms of a mixture
of α-stable components allows to treat different types of eyes
movement (smooth pursuit, saccades, fixational movements)
within the same framework and makes a step towards the
unified modelling of different kinds of gaze shifts. The latter
is a research trend that is recently gaining currency in the
eye movement realm [23], [24]. For instance, when Eq. (18)
is exploited for within-patch exploration, it generates a first-
order Markov process, which is compatible with most recent
findings [25].

Further, this approach may be developed for a principled
modeling of individual differences and departure from opti-
mality [13] since providing cues for defining the informal
notion of scanpath idiosyncrasy in terms of individual gaze
shift distribution parameters. The latter represents a crucial
issue both for theory [3], [19], [23] and applications [30].
Meanwhile, it stresses the importance of the role of the motor
component, which is often neglected in the literature [3], [18].

One issue is how the approach presented here relates to
other works in the literature. As pointed out from the be-
ginning, scanpath variability has been abundantly overlooked
in the current literature (cfr., [4]). But there are few notable
exceptions. In [61] simple eye-movements patterns, in the
vein of [19], are straightforwardly incorporated as a prior
of a dynamic Bayesian network to guide the sequence of
eye focusing positions on videos. The model presented in
[62] embeds at least one parameter suitable to be tuned to
obtain different saccade length distributions on static images,

although statistics obtained by varying such parameter arestill
far from those of human data. Closer to our study is the model
by Keech and Resca [63] that mimics phenomenologically the
observed eye movement trajectories and where randomness is
captured through a Monte Carlo selection of a particular eye
movement based on its probability; probabilistic modelingof
eye movement data has been also discussed in [64]. However,
both models address the specific task of conjunctive visual
search and are limited to static scenes. Other exceptions are
given, but in the very peculiar field of eye-movements in
reading [47].

The majority of models in computational vision basically
resort to deterministic mechanisms to realize gaze shifts,and
this has been the main route to model saccades the most
random type of gaze shift [2]. Hence, if the same saliency
map is provided as input, they will basically generate the
same scanpath; further, disregard of motor strategies and
tendencies that characterise gaze shift programming results in
distributions of gaze shift amplitudes different from those that
can be derived from eye-tracking experiments.

We have presented in Section IV examples showing that the
overall distributions of human and ES generated shifts on the
same video are close in their statistics, see Fig. 6.

When anargmax operation (e.g., the WTA scheme or the
MAP decision rule in a probabilistic setting), the statistics of
model generated scanpaths do not match those of the eye-
tracked subjects and the characteristic heavy-tailed distribution
of amplitudes are not recovered. This result is in agreement
and extends that reported in [2].

On the other hand, models proposed in the literature that
mainly focus on representational issues can be complementary
to the one proposed here. Nothing prevents from using the ES
gaze shift mechanism in the framework of a general top-down,
object-based attention system by adopting a computation of
saliency shaped in the vein of [6]. Indeed, the integration
of eye guidance by interlocking ES and a full Bayesian
representation of objects [6] and context [7] is the matter of
ongoing research. It may be also worth noting that here eye
guidance interacts with patches rather than the whole saliency
map (differently from [22]). Thus, the ES model is to be
naturally exploited for object-based attention schemes, relying
on the notion that proto-objects drive the initial samplingof
the visual scene [10], [40]. In our model, at any timet, the
dynamic proto-object map is formed by the foraging eye,
by considering both local and global information within the
frame of the current oculomotor action. This is a possible
way to account for the very notion of proto-objects as that of
a ”constantly regenerating flux” advocated by Rensink [40],
which makes proto-objects the bulk of interaction between
perceptual and motor processes in computational models of
visual attention [10].

Finally, beside theoretical relevance for modelling human
behavior, the randomness of the process can be an advantage in
computer vision and learning tasks. For instance, in [58] ithas
been reported that a stochastic attention selection mechanism
(a refinement of the algorithm proposed in [33]) enables the
i-Cub robot to explore its environment up to three times
faster compared to the standard WTA mechanism [5]. Indeed,
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stochasticity makes the robot sensitive to new signals and
flexibly change its attention, which in turn enables efficient
exploration of the environment as a basis for action learning
[59], [60].
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