Body and gestures: models, algorithms, applications

Corso di Interazione uomo-macchina II

Prof. Giuseppe Boccignone

Dipartimento di Informatica Università di Milano

boccignone@di.unimi.it http://boccignone.di.unimi.it/IUM2_2014.html

Non verbal behavior //De Meuse

DeMeuse (1987)

Individual Control

Posture and gesture interaction

	Example Social Behaviours						iours	Tech.					
Social Cues	emotion	personality	status	dominance	persuasion	regulation	rapport	speech anlysis	computer vision	biometry			
Physical appearance													
height			\checkmark	\checkmark					\checkmark	\checkmark			
attractiveness		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		<	\checkmark			
body shape		\checkmark		\checkmark					\checkmark	\checkmark			
Gesture and posture													
hand gestures	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	1	$\boldsymbol{\boldsymbol{\wedge}}$	\checkmark	6.		
posture	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	5	\checkmark	\checkmark	111	NY ADD	
walking		\checkmark	\checkmark	\checkmark				2	\checkmark	\checkmark			
Face and eyes behaviour									P				
facial expressions	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark		<	\checkmark			
gaze behaviour	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				
focus of attention	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				
Vocal behaviour				1									
prosody	\checkmark	\checkmark)	\checkmark	\checkmark		\checkmark	\checkmark					
turn taking	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark					
vocal outbursts	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
silence	\checkmark		\checkmark				\checkmark	\checkmark			A. Vincia	relli, M. Pantic, H. Bourlard,	
Space and Environment								Social Sig	Social Signal Processing: Survey of ar				
distance	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark		Image ar	nd Vision Computing (2008)	
seating arrangement				\checkmark	\checkmark		\checkmark		\checkmark		0		

Analysing postures and gestures

- The primary goal of gesture recognition research is to create a system which can identify specific human gestures and use them to convey information or for device control.
- A gesture may be defined as a physical movement of the hands, arms, face, and body with the intent to convey information or meaning.
- Gesture recognition, then, consists not only of the tracking of human movement, but also the interpretation of that movement as semantically meaningful commands

Analysing postures and gestures //application areas

General domain	Specific area
Virtual reality	 Interactive virtual worlds Games Virtual studios Character animation Teleconferencing (e.g., film, advertising, home-use)
"Smart" surveillance systems	—Access control —Parking lots —Supermarkets, department stores —Vending machines, ATMs —Traffic
Advanced user interfaces	 Social interfaces Sign-language translation Gesture driven control Signaling in high-noise environments (airports, factories)
Motion analysis	 Content-based indexing of sports video footage Personalized training in golf, tennis, etc. Choreography of dance and ballet Clinical studies of orthopedic patients
Model-based coding	-Very low bit-rate video compression

Hand gestures

· Taxonomy of hand gestures for HCI

• Visual interpretation of hand gestures can help in achieving the ease and naturalness desired for Human Computer Interaction (HCI).

Posture and gesture interaction

Analysing postures and gestures

- There are two main challenges in recognizing posture and gestures:
 - detecting the body parts involved in the gesture (e.g. hands)
 - · modeling the temporal dynamics of the gesture

Analysing postures and gestures: //detecting parts: Kinect style

Analysing postures and gestures: //detecting parts: Kinect style (Microsoft)

Analysing postures and gestures: //detecting parts: Kinect style (Microsoft)

Analysing postures and gestures: //detecting parts: Kinect style (Microsoft)

Analysing postures and gestures: //detecting parts: Kinect style (Microsoft)

		Applic	ation			
		Camera CreateNUICamera DestroyNUICamera	Motor CreateNUIMotor DestroyNUIMotor			
		Color	Accelerometer			
30 DEPTH SENSORS RGB CAMERA 70 yro RULTI-ARRAY MIC MOTORIZED TILT	Image Stream	GetNUICameraColorFrameRAW GetNUICameraColorFrameRGB24 GetNUICameraColorFrameRGB32	GetNUIMotorAccelerometer Position (SHORT) X - Left/Right Y - Front/Back Z - Up/Down			
	Audio Stream	Depth	Control NUIMotorMove Position (SHORT) Up/Down (+/-) GetNUIMotorSerial 12 Digit String			
		Get NUI Camera Depth Frame RAW Get NUI Camera Depth Frame RGB 32				
			LED			
		StartNUICamera StopNUICamera	Mode - BYTE 0 · Off 1 - Green 2 - Red 3 - Orange 4/5 - Blink Green 6/7 - Blink Red/Orange			

Analysing postures and gestures: //detecting parts: Kinect style (OpenNI)

Kinect style: //<u>http://www.openni.org</u>/

Kinect style: //<u>http://www.openni.org</u>/

Analysing postures and gestures: //detecting parts: motion capture

Analysing postures and gestures: //detecting parts: computer vision

- There are two main challenges in recognizing posture and gestures:
 - detecting the body parts involved in the gesture (e.g. hands)
 - addressed by selecting appropriate visual features: these include, e.g., histograms of oriented gradients, optical flow, spatio-temporal salient points and space-time volumes.
 - · modeling the temporal dynamic of the gesture

Analysing postures and gestures: //detecting parts: computer vision

Analysing postures and gestures: //detecting parts: computer vision

tracked body parts indexed by different colors

Analysing postures and gestures: //detecting parts: computer vision

tracked body parts indexed by different colors

Analysing postures and gestures: //detecting parts: computer vision

convex hull

Analysing postures and gestures: //representing parts: computer vision

Analysing hand gestures: //representing parts: computer vision

Analysing hand gestures: //representing parts: computer vision

Analysing postures and gestures: //detecting parts: computer vision (opencv)

Analysing postures and gestures: //detecting parts: computer vision (Matlab)

Analysing postures and gestures: //detecting parts: computer vision (Piotr's toolbox)

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

Analysing postures and gestures: //detecting parts: computer vision

Analysing postures and gestures

Analysing postures and gestures

Analysing postures and gestures

- There are two main challenges in recognizing posture and gestures:
 - detecting the body parts involved in the gesture (e.g. hands)
 - · modeling the temporal dynamic of the gesture
 - addressed by using techniques such as Dynamic Time Warping, Hidden Markov Models, and Conditional Random Fields.

Body gestures and postures //Generative model

Production and perception of body gestures. Body gestures originate as a mental concept G, are expressed (Tpg) through limb motion motion B, and are perceived (Tvb) as visual images V.

Production and perception of gestures. Hand gestures originate as a mental concept G, are expressed (Thg) through arm and hand motion H, and are perceived (Tvh) as visual images V.

Body gestures and postures //Generative model

Production and perception of body gestures. Body gestures originate as a mental concept G, are expressed (Tpg) through limb motion motion B, and are perceived (Tvb) as visual images V.

Hand gestures //Generative model

Production and perception of gestures. Hand gestures originate as a mental concept G, are expressed (Thg) through arm and hand motion H, and are perceived (Tvh) as visual images V.

Body gestures and postures //Generative model: inference

Production and **perception** of body gestures. Body gestures originate as a mental concept G, are expressed (Tpg) through limb motion motion B, and are perceived (Tvb) as visual images V.

Body gestures and postures //Generative model: more complex model

Production and **perception** of body gestures. Body gestures originate as a mental concept G, are expressed (Tpg) through limb motion motion B, and are perceived (Tvb) as visual images V.

Body gestures and postures //Generative model

A *body* gesture is a stochastic process in the gesture model parameter space \mathcal{M}_T over a suitably defined time interval I.

Body gestures and postures //Generative model: inference

 $P(G_{t+1} | V_{t+1}) \approx$ $P(V_{t+1} | G_{t+1}) P(G_{t+1} | V_t) \approx$ $P(V_{t+1} | G_{t+1}) \sum_{G_t} P(G_{t+1} | G_t) P(G_t | V_t)$

A *body* gesture is a stochastic process in the gesture model parameter space \mathcal{M}_T over a suitably defined time interval I.

Hand gestures //Generative model

A hand gesture is a stochastic process in the gesture model parameter space \mathcal{M}_T over a suitably defined time interval I.

 $P(G_{t+1} | V_{t+1}) \approx$ $P(V_{t+1} | G_{t+1}) P(G_{t+1} | V_t) \approx$ $P(V_{t+1} | G_{t+1}) \sum_{G_t} P(G_{t+1} | G_t) P(G_t | V_t)$

A hand gesture is a stochastic process in the gesture model parameter space \mathcal{M}_T over a suitably defined time interval I.

Hand gesture recognition //Simple example

A hand gesture is a stochastic process in the gesture model parameter space \mathcal{M}_T over a suitably defined time interval I.

Hand gesture recognition //Simple example: app architecture

Features: sequential 3D points (x, y, z) of the hand

- Computed from the hand-point tracking code implemented in PrimeSense open-source OpenNI framework for Kinect

- Each gesture repeated 10 times

- OpenNI hand-tracking code runs at 30 frames per second, a two-second circle gesture is captured in 60 observations (trajectory sampled points),

- Each observation having three dimensions (x, y, z)

Hand gesture recognition //Simple example: gesture inference

Hand gesture recognition //Simple example: gesture inference

Each gesture is modelled by a specific HMM Can compute the log-likelihood of the hand movement, given the gesture:

 $\text{log P}(H_{t+1,} H_{t,} H_{t-1,\ldots} | \text{ } G = \text{circle})$

Hand gesture recognition //Simple example: gesture inference

Prior choice: restrict the model to the sequence of adjacent states that constitute a gesture.

- zeroing out the probabilities at the matrix edges: the probabilities of jumping between distant states in the model	$\begin{bmatrix} 0.5\\0\\0\\0 \end{bmatrix}$	$0.5 \\ 0.5 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0.5 \\ 0.5 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0.5 \\ 0.5 \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0.5 \end{array}$	0 0 0 0	0 0 0 0	0 0 0 0
 A = - choose a prior that constrains the transition matrix such that state transitions can only occur in one direction and between two adjacent states: a left-to-right HMM 	$\left[\begin{array}{c} 0\\ 0\\ 0\\ 0\end{array}\right]$	0 0 0	0 0 0 0	0 0 0 0	$\begin{array}{c} 0.5\\0\\0\\0\end{array}$	$0.5 \\ 0.5 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0.5 \\ 0.5 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ 0.5\\ 1 \end{array}$

